img_layers.py 1.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from paddle.trainer_config_helpers import *

Q
qijun 已提交
17
settings(learning_rate=1e-3, batch_size=1000)
18

Q
qijun 已提交
19
img = data_layer(name='image', size=256 * 256)
20

21 22
# the parse_conv in config_parse.py is not strictly accurate when filter_size
# is not square. So here set square filter_size.
Q
qijun 已提交
23 24 25 26 27 28
img_conv = img_conv_layer(
    input=img,
    num_channels=1,
    num_filters=64,
    filter_size=(32, 32),
    padding=(1, 1),
29
    dilation=(1, 1),
Q
qijun 已提交
30 31
    stride=(1, 1),
    act=LinearActivation())
32 33 34 35 36 37
img_bn = batch_norm_layer(input=img_conv, act=ReluActivation())

img_norm = img_cmrnorm_layer(input=img_bn, size=32)

img_pool = img_pool_layer(input=img_conv, pool_size=32, pool_type=MaxPooling())

38
outputs(img_pool, img_norm)