sequence_reshape_op.cc 5.1 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
yangyaming 已提交
14 15

#include "paddle/operators/sequence_reshape_op.h"
Y
yangyaming 已提交
16
#include "paddle/framework/ddim.h"
Y
yangyaming 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

class SequenceReshapeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceReshapeOp should not be null.");
    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
30
    auto x_numel = product(x_dims);
Y
yangyaming 已提交
31
    PADDLE_ENFORCE_EQ(x_dims.size(), 2U, "Rank of Input(X) should be 2.");
Y
yangyaming 已提交
32 33 34
    int new_dim = ctx->Attrs().Get<int>("new_dim");
    ctx->SetOutputDim("Out",
                      {x_numel / new_dim, static_cast<int64_t>(new_dim)});
Y
yangyaming 已提交
35 36 37 38 39 40 41
  }
};

class SequenceReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SequenceReshapeOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with shape "
             "being [N, M].");
    AddOutput("Out",
              "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with "
              "shape [T, new_dim] where T is calculated based on X.lod, M and "
              "new_dim.");
    AddAttr<int>("new_dim", "Sequence dimension of the output LoDTensor.");
    AddComment(R"DOC(
Sequence Reshape Operator.

This operator will rearrange the input sequences. The new dimension is set by
attribute and length of each sequence may change longer or shorter which is
decided by original length, original dimension and new dimension. The following
example will help to illustrate the function of this operator:

x is a LoDTensor:
    x.lod  = [[0, 2, 6]]
Y
yangyaming 已提交
60 61
    x.data = [[1, 2], [3, 4],
              [5, 6], [7, 8], [9, 10], [11, 12]]
62 63 64 65 66
    x.dims = [6, 2]

set new_dim = 4

then out is a LoDTensor:
Y
yangyaming 已提交
67 68 69
    out.lod  = [[0, 1, 3]]
    out.data = [[1, 2, 3, 4],
                [5, 6, 7, 8], [9, 10, 11, 12]]
70 71 72 73 74 75 76
    out.dims = [3, 4]

Currently, only 1-level LoDTensor is supported and please make sure (original
length * original dimension) can be divided by new_dim with no remainder for
each sequence.

)DOC");
Y
yangyaming 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  }
};

class SequenceReshapeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasInput(framework::GradVarName("Out")),
        "Input(Out@GRAD) of SequenceReshapeGradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceReshapeGradOp should  not be null.");

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
};

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class SequenceReshapeGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("sequence_reshape_grad");
    op_desc_ptr->SetInput("X", Input("X"));
    op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op_desc_ptr->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

Y
yangyaming 已提交
112 113 114 115 116
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_reshape, ops::SequenceReshapeOp,
117
                  ops::SequenceReshapeOpMaker, ops::SequenceReshapeGradOpMaker);
Y
yangyaming 已提交
118 119 120
REGISTER_OPERATOR(sequence_reshape_grad, ops::SequenceReshapeGradOp);
REGISTER_OP_CPU_KERNEL(
    sequence_reshape,
Y
yangyaming 已提交
121 122 123 124
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, int64_t>);
Y
yangyaming 已提交
125 126
REGISTER_OP_CPU_KERNEL(
    sequence_reshape_grad,
Y
yangyaming 已提交
127 128 129 130
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, int>);