math_function.cu 12.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include <algorithm>
Y
Yu Yang 已提交
15
#include <vector>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/data_type.h"
17 18
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function_impl.h"
22 23
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
24
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
25

Q
qijun 已提交
26 27 28 29
namespace paddle {
namespace operators {
namespace math {

30
using float16 = paddle::platform::float16;
31
using bfloat16 = paddle::platform::bfloat16;
32 33
using complex64 = paddle::platform::complex64;
using complex128 = paddle::platform::complex128;
34

K
Kexin Zhao 已提交
35
template struct SetConstant<platform::CUDADeviceContext, platform::float16>;
Q
QI JUN 已提交
36 37 38 39 40
template struct SetConstant<platform::CUDADeviceContext, float>;
template struct SetConstant<platform::CUDADeviceContext, double>;
template struct SetConstant<platform::CUDADeviceContext, int>;
template struct SetConstant<platform::CUDADeviceContext, int64_t>;
template struct SetConstant<platform::CUDADeviceContext, bool>;
41 42 43 44 45 46 47 48 49 50 51 52 53
template struct SetConstant<platform::CUDADeviceContext, platform::complex64>;
template struct SetConstant<platform::CUDADeviceContext, platform::complex128>;

#define DEFINE_GPU_TRANS(RANK)                                             \
  template struct Transpose<platform::CUDADeviceContext, float, RANK>;     \
  template struct Transpose<platform::CUDADeviceContext, double, RANK>;    \
  template struct Transpose<platform::CUDADeviceContext, float16, RANK>;   \
  template struct Transpose<platform::CUDADeviceContext, bfloat16, RANK>;  \
  template struct Transpose<platform::CUDADeviceContext, int8_t, RANK>;    \
  template struct Transpose<platform::CUDADeviceContext, int32_t, RANK>;   \
  template struct Transpose<platform::CUDADeviceContext, int64_t, RANK>;   \
  template struct Transpose<platform::CUDADeviceContext, complex64, RANK>; \
  template struct Transpose<platform::CUDADeviceContext, complex128, RANK>;
54 55 56 57 58 59 60

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);
Q
qijun 已提交
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#define REINTERPRET(T, DST_PTR, SRC_PTR) \
  T* DST_PTR = reinterpret_cast<T*>(SRC_PTR)

template <typename T>
__global__ void TransposeNormalKernel(const T* in_ptr, T* out_ptr,
                                      int64_t element,
                                      const int64_t* in_stride_ptr,
                                      const int64_t* out_stride_ptr,
                                      const int64_t* axis_ptr, int rank) {
  CUDA_KERNEL_LOOP(out_idx, element) {
    int64_t in_idx = 0;
    int64_t tmp_idx = out_idx;
    for (int i = 0; i < rank; ++i) {
      const int64_t coordinate = tmp_idx / out_stride_ptr[i];
      tmp_idx -= coordinate * out_stride_ptr[i];
      in_idx += coordinate * in_stride_ptr[axis_ptr[i]];
    }
    out_ptr[out_idx] = in_ptr[in_idx];
  }
}

template <typename T>
struct TransposeNormal<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& in, framework::Tensor* out,
                  const std::vector<int>& axis) {
    const int rank = axis.size();
    auto in_stride = framework::stride(in.dims());
    auto out_stride = framework::stride(out->dims());
    auto* in_ptr = in.data<T>();
    auto* out_ptr = out->data<T>();

    // copy in_stride, out_stride, axis to gpu device
    const platform::CUDAPlace& cuda_place =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace());
    platform::CPUPlace cpu_place = platform::CPUPlace();
    size_t size = 3 * rank * sizeof(int64_t);
    auto cpu_buf_holder = memory::AllocShared(cpu_place, size);
    auto cuda_buf_holder = memory::AllocShared(cuda_place, size);
    REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
    REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
    for (int i = 0; i < rank; ++i) {
      cpu_buf[i] = in_stride[i];
      cpu_buf[rank + i] = out_stride[i];
      cpu_buf[2 * rank + i] = axis[i];
    }
    memory::Copy(cuda_place, cuda_buf, cpu_place, cpu_buf, size,
                 context.stream());
    REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
    REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
    REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

    const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
    const int MAX_GRID_DIM =
        context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int64_t elements = in.numel();
    int block_size = (elements >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(elements)));
    int grid_size = elements / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    TransposeNormalKernel<T><<<grid_size, block_size, 0, context.stream()>>>(
        in_ptr, out_ptr, elements, in_stride_ptr, out_stride_ptr, axis_ptr,
        rank);
  }
};

// define transpose normal
#define DEFINE_GPU_TRANS_NORMAL(TYPE) \
  template struct TransposeNormal<platform::CUDADeviceContext, TYPE>

DEFINE_GPU_TRANS_NORMAL(float16);
DEFINE_GPU_TRANS_NORMAL(bfloat16);
DEFINE_GPU_TRANS_NORMAL(float);
DEFINE_GPU_TRANS_NORMAL(double);
DEFINE_GPU_TRANS_NORMAL(int);
DEFINE_GPU_TRANS_NORMAL(int64_t);
DEFINE_GPU_TRANS_NORMAL(bool);
DEFINE_GPU_TRANS_NORMAL(int16_t);
DEFINE_GPU_TRANS_NORMAL(uint8_t);
DEFINE_GPU_TRANS_NORMAL(int8_t);
143 144
DEFINE_GPU_TRANS_NORMAL(complex64);
DEFINE_GPU_TRANS_NORMAL(complex128);
145

146 147
struct TensorSetConstantGPU {
  TensorSetConstantGPU(const platform::DeviceContext& context,
D
dangqingqing 已提交
148
                       framework::Tensor* tensor, float value)
149 150 151
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
D
dzhwinter 已提交
152
  void apply() const {
Q
QI JUN 已提交
153 154 155
    SetConstant<platform::CUDADeviceContext, T> functor;
    functor(reinterpret_cast<const platform::CUDADeviceContext&>(context_),
            tensor_, static_cast<T>(value_));
156 157 158 159 160 161 162 163
  }

  const platform::DeviceContext& context_;
  framework::Tensor* tensor_;
  float value_;
};

template <>
D
dzhwinter 已提交
164
void set_constant_with_place<platform::CUDAPlace>(
165 166
    const platform::DeviceContext& context, framework::Tensor* tensor,
    float value) {
Y
Yu Yang 已提交
167
  framework::VisitDataType(tensor->type(),
168
                           TensorSetConstantGPU(context, tensor, value));
169 170
}

Q
qingqing01 已提交
171
template <typename T>
Q
qingqing01 已提交
172 173 174
__global__ void RowwiseAddKernel(const T* a, const T* b, T* c, int width,
                                 int num) {
  T tmp = 1.0 / width;
175
  CUDA_KERNEL_LOOP(i, num) {
Q
qingqing01 已提交
176 177 178
    int h = i * tmp;
    int w = i - h * width;
    c[i] = a[i] + b[w];
Q
qingqing01 已提交
179 180 181 182 183 184 185 186 187
  }
}

template <typename T>
struct RowwiseAdd<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& vector, framework::Tensor* output) {
    auto in_dims = input.dims();
188
    auto out_dims = output->dims();
Q
qingqing01 已提交
189
    auto size = input.numel() / in_dims[0];
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    PADDLE_ENFORCE_EQ(
        vector.numel(), size,
        platform::errors::InvalidArgument(
            "The input vector size"
            " should be equal to the size of each row of input tensor."
            " Expected vector size=%d, but received %d",
            size, vector.numel()));
    const char* in_dims_cstr = in_dims.to_str().c_str();
    const char* out_dims_cstr = out_dims.to_str().c_str();
    PADDLE_ENFORCE_EQ(
        out_dims, in_dims,
        platform::errors::InvalidArgument(
            "The output tensor shape should be same as the input tensor"
            " shape. Expected output tensor shape: %s,"
            " but received %s",
            in_dims_cstr, out_dims_cstr));
Q
qingqing01 已提交
206 207 208
    int blocks = 512;
    int grids = (input.numel() + blocks - 1) / blocks;
    RowwiseAddKernel<T><<<grids, blocks, 0, context.stream()>>>(
Q
qingqing01 已提交
209 210
        input.data<T>(), vector.data<T>(), output->data<T>(),
        static_cast<int>(in_dims[1]), static_cast<int>(input.numel()));
Q
qingqing01 已提交
211 212 213
  }
};

Q
QI JUN 已提交
214 215 216
template struct RowwiseAdd<platform::CUDADeviceContext, float>;
template struct RowwiseAdd<platform::CUDADeviceContext, double>;
template struct ColwiseSum<platform::CUDADeviceContext, float>;
Y
yangyaming 已提交
217 218
template struct ColwiseSum<platform::CUDADeviceContext, int>;
template struct ColwiseSum<platform::CUDADeviceContext, int64_t>;
Q
QI JUN 已提交
219 220
// template struct ColwiseSum<platform::CUDADeviceContext, double>;
// The ColwiseSum<platform::CUDADeviceContext, double> failed in debug mode,
221 222
// and only failed for this case. So reimplemented it.
template <>
Q
QI JUN 已提交
223 224
void ColwiseSum<platform::CUDADeviceContext, double>::operator()(
    const platform::CUDADeviceContext& context, const framework::Tensor& input,
225 226 227
    framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
228 229 230 231 232 233
  PADDLE_ENFORCE_EQ(vector->numel(), size,
                    platform::errors::InvalidArgument(
                        "The size of input vector"
                        " should be equal to the size of input tensor column"
                        " dimension. Expected vector size=%d, but received %d",
                        size, vector->numel()));
234 235
  framework::Tensor one;
  one.mutable_data<double>({in_dims[0]}, context.GetPlace());
Q
QI JUN 已提交
236
  SetConstant<platform::CUDADeviceContext, double> set;
237
  set(context, &one, static_cast<double>(1.0));
Y
Yu Yang 已提交
238 239 240
  GetBlas<platform::CUDADeviceContext, double>(context).GEMV(
      true, static_cast<int>(in_dims[0]), static_cast<int>(in_dims[1]), 1.0,
      input.data<double>(), one.data<double>(), 0.0, vector->data<double>());
241
}
242

C
chengduoZH 已提交
243 244 245 246 247 248 249 250 251 252 253
template struct RowwiseSum<platform::CUDADeviceContext, float>;
// template struct RowwiseSum<platform::CUDADeviceContext, double>;
// TODO(zcd): Following ColwiseSum format, need to confirm.
// The RowwiseSum<platform::CUDADeviceContext, double> failed in debug mode,
// and only failed for this case. So reimplemented it.
template <>
void RowwiseSum<platform::CUDADeviceContext, double>::operator()(
    const platform::CUDADeviceContext& context, const framework::Tensor& input,
    framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
254 255 256 257 258 259
  PADDLE_ENFORCE_EQ(vector->numel(), in_dims[0],
                    platform::errors::InvalidArgument(
                        "The size of input vector"
                        " should be equal to the size of input tensor row"
                        " dimension. Expected vector size=%d, but received %d",
                        in_dims[0], vector->numel()));
C
chengduoZH 已提交
260 261 262 263
  framework::Tensor one;
  one.mutable_data<double>({size}, context.GetPlace());
  SetConstant<platform::CUDADeviceContext, double> set;
  set(context, &one, static_cast<double>(1.0));
Y
Yu Yang 已提交
264 265 266
  GetBlas<platform::CUDADeviceContext, double>(context).GEMV(
      true, static_cast<int>(in_dims[1]), static_cast<int>(in_dims[0]), 1.0,
      one.data<double>(), input.data<double>(), 0.0, vector->data<double>());
C
chengduoZH 已提交
267 268 269 270 271
}

template struct RowwiseMean<platform::CUDADeviceContext, float>;
template struct RowwiseMean<platform::CUDADeviceContext, double>;

272 273 274 275 276 277 278 279 280 281 282 283 284
template <typename T>
struct ElementwiseAddTo<platform::CUDADeviceContext, T> {
  void operator()(platform::CUDADeviceContext* ctx,
                  const framework::Tensor& src, framework::Tensor* dst) {
    auto in = framework::EigenVector<T>::Flatten(src);
    auto out = framework::EigenVector<T>::Flatten(*dst);
    auto& place = *(ctx->eigen_device());
    out.device(place) = out + in;
  }
};

template struct ElementwiseAddTo<platform::CUDADeviceContext,
                                 platform::float16>;
Q
qijun 已提交
285 286 287
}  // namespace math
}  // namespace operators
}  // namespace paddle