test_lod_reset_op.py 4.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21 22 23 24 25


class TestLodResetOpByAttr(OpTest):
    def setUp(self):
        self.op_type = "lod_reset"
        x = np.random.random((10, 20)).astype("float32")
26 27 28 29 30
        lod = [[3, 2, 5]]
        # target_offset_lod and target_lod are the same lod info represented
        # in offset-based format and length-based format, respectively.
        target_offset_lod = [0, 7, 10]
        target_lod = [7, 3]
31
        self.inputs = {'X': (x, lod)}
32 33 34
        # The `target_lod` attribute is still based on offset
        self.attrs = {'target_lod': target_offset_lod}
        self.outputs = {'Out': (x, [target_lod])}
35 36 37 38 39 40 41 42 43 44 45 46

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestLodResetOpByInput(OpTest):
    def setUp(self):
        self.op_type = "lod_reset"
        x = np.random.random((10, 20)).astype("float32")
47 48 49 50 51
        lod = [[3, 2, 5]]
        # target_offset_lod and target_lod are the same lod info represented
        # in offset-based format and length-based format, respectively.
        target_offset_lod = [0, 4, 7, 10]
        target_lod = [4, 3, 3]
52 53
        self.inputs = {
            'X': (x, lod),
54
            'Y': np.array([target_offset_lod]).astype('int32')
55
        }
56
        self.outputs = {'Out': (x, [target_lod])}
57 58 59 60 61

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
62
        self.check_grad(["X"], "Out", no_grad_set=set("Y"))
63 64 65 66 67 68


class TestLodResetOpBoth(OpTest):
    def setUp(self):
        self.op_type = "lod_reset"
        x = np.random.random((10, 20)).astype("float32")
69 70 71 72
        lod = [[3, 2, 5]]
        target_offset_lod_attr = [0, 7, 10]
        target_offset_lod_in = [0, 4, 7, 10]
        target_lod_in = [4, 3, 3]
73 74
        self.inputs = {
            'X': (x, lod),
75
            'Y': np.array(target_offset_lod_in).astype('int32')
76
        }
77 78
        self.attrs = {'target_lod': target_offset_lod_attr}
        self.outputs = {'Out': (x, [target_lod_in])}
79 80 81 82 83

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
84 85 86 87 88 89 90
        self.check_grad(["X"], "Out", no_grad_set=set("Y"))


class TestLodResetOpYIsLoDTensor(OpTest):
    def setUp(self):
        self.op_type = "lod_reset"
        x = np.random.random((10, 20)).astype("float32")
91
        lod = [[3, 2, 5]]
92
        y = np.random.random((10, 10)).astype("float32")
93 94 95
        target_lod = [[4, 3, 3]]
        self.inputs = {'X': (x, lod), 'Y': (y, target_lod)}
        self.outputs = {'Out': (x, target_lod)}
96 97 98 99 100 101

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out", no_grad_set=set("Y"))
102 103


104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class TestLodAppendOpByAttr(OpTest):
    def setUp(self):
        self.op_type = "lod_reset"
        x = np.random.random((10, 20)).astype("float32")
        lod = [[3, 2, 5]]
        # target_offset_lod and target_lod are the same lod info represented
        # in offset-based format and length-based format, respectively.
        target_offset_lod = [i for i in range(11)]
        self.inputs = {'X': (x, lod)}
        out_lod = [[3, 2, 5], [1] * 10]
        # The `target_lod` attribute is still based on offset
        self.attrs = {'target_lod': target_offset_lod, 'append': True}
        self.outputs = {'Out': (x, out_lod)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


125 126
if __name__ == '__main__':
    unittest.main()