activation_mkldnn_op.cc 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
K
Krzysztof Binias 已提交
16
#include "paddle/fluid/platform/mkldnn_helper.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
29 30

namespace {
K
Krzysztof Binias 已提交
31 32
std::string gethash(const mkldnn::memory::dims &operand_dims,
                    const mkldnn::algorithm algorithm) {
K
Krzysztof Binias 已提交
33 34 35 36 37 38 39 40
  auto dim2str = [](const mkldnn::memory::dims &operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dim2str(operand_dims) + std::to_string(algorithm);
K
Krzysztof Binias 已提交
41
}
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
}  // namespace

template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    Functor functor;
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
58

59 60 61 62 63 64 65 66 67 68
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input OutGrad tensor");

69 70 71 72
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

73 74 75 76 77 78 79 80 81
    Functor functor;
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
                     mkldnn::algorithm algorithm, const T alpha = 0,
                     const T beta = 0) {
82 83 84 85 86
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

87 88
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
89

90 91
  const T *x_data = x->data<T>();
  T *y_data = y->mutable_data<T>(ctx.GetPlace());
92

Y
Yihua Xu 已提交
93 94 95 96
  PADDLE_ENFORCE(
      x->dims().size() == 2 || x->dims().size() == 3 || x->dims().size() == 4,
      "Input dim must be with 2, 3 or 4");

97 98 99 100
  std::vector<int> src_tz = framework::vectorize2int(x->dims());

  auto src_format =
      src_tz.size() == 2 ? mkldnn::memory::format::nc : x->format();
101

K
Krzysztof Binias 已提交
102
  const std::string key = gethash(src_tz, algorithm);
K
Krzysztof Binias 已提交
103 104
  const std::string key_src_data =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_data";
105 106 107 108 109 110 111 112
  const std::string key_src_layout =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_layout";
  const std::string key_with_layout = key + std::to_string(src_format);
  const std::string key_src_mem = key_with_layout + "@eltwise_fwd_src_mem";
  const std::string key_dst_mem = key_with_layout + "@eltwise_fwd_dst_mem";
  const std::string key_fwd = key_with_layout + "@eltwise_fwd";
  const std::string key_fwd_pd = key_with_layout + "@eltwise_fwd_pd";

113 114
  bool is_test = ctx.Attr<bool>("is_test");

115 116 117
  // save input data and layout to be referred in backward path
  auto p_src_data = std::make_shared<const T *>(x_data);
  auto p_src_layout = std::make_shared<memory::format>(src_format);
118 119 120 121
  if (!is_test) {
    dev_ctx.SetBlob(key_src_data, p_src_data);
    dev_ctx.SetBlob(key_src_layout, p_src_layout);
  }
K
Krzysztof Binias 已提交
122

K
Krzysztof Binias 已提交
123 124
  auto p_fwd = std::static_pointer_cast<mkldnn::eltwise_forward>(
      dev_ctx.GetBlob(key_fwd));
K
Krzysztof Binias 已提交
125

126
  std::shared_ptr<memory> dst_memory;
K
Krzysztof Binias 已提交
127

K
Krzysztof Binias 已提交
128
  if (p_fwd == nullptr) {
129 130 131 132 133 134 135 136 137
    // create mkldnn memory for input X
    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), src_format);
    auto src_memory = std::shared_ptr<memory>(
        new memory({src_md, mkldnn_engine}, to_void_cast(x_data)));
    // save src_memory to be referred in backward path
    dev_ctx.SetBlob(key_src_mem, src_memory);

    // create primitive descriptor for activation forward and save it
138 139 140
    auto mkldnn_forward_prop_kind = is_test
                                        ? mkldnn::prop_kind::forward_inference
                                        : mkldnn::prop_kind::forward_training;
141
    auto forward_desc = mkldnn::eltwise_forward::desc(
142
        mkldnn_forward_prop_kind, algorithm,
143 144 145 146 147
        src_memory->get_primitive_desc().desc(), alpha, beta);
    auto forward_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
        forward_desc, mkldnn_engine);

    // save prim desc into global device context to be referred in backward path
148
    if (!is_test) dev_ctx.SetBlob(key_fwd_pd, forward_pd);
149 150 151 152 153 154 155 156 157 158

    // create mkldnn memory for output y
    dst_memory =
        std::make_shared<memory>(forward_pd->dst_primitive_desc(), y_data);

    dev_ctx.SetBlob(key_dst_mem, dst_memory);

    // create activation primitive
    p_fwd = std::make_shared<mkldnn::eltwise_forward>(*forward_pd, *src_memory,
                                                      *dst_memory);
K
Krzysztof Binias 已提交
159 160
    dev_ctx.SetBlob(key_fwd, p_fwd);
  } else {
K
Krzysztof Binias 已提交
161
    // primitives already exist
162
    auto src_memory =
K
Krzysztof Binias 已提交
163
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
164 165 166
    PADDLE_ENFORCE(src_memory != nullptr,
                   "Fail to find eltwise src_memory in device context.");
    dst_memory =
K
Krzysztof Binias 已提交
167
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_dst_mem));
168 169
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find eltwise dst_memory in device context.");
K
Krzysztof Binias 已提交
170

171 172
    src_memory->set_data_handle(platform::to_void_cast(x_data));
    dst_memory->set_data_handle(y_data);
K
Krzysztof Binias 已提交
173
  }
174 175

  // push primitive to stream and wait until it's executed
176 177 178 179 180 181
  std::vector<primitive> pipeline;
  pipeline.push_back(*p_fwd);
  stream(stream::kind::eager).submit(pipeline).wait();

  y->set_layout(DataLayout::kMKLDNN);
  y->set_format(GetMKLDNNFormat(*dst_memory));
182 183
}

184 185 186 187
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
                  mkldnn::algorithm algorithm, const T alpha = 0,
                  const T beta = 0) {
188 189 190
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

191 192
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
193

194 195
  const T *diff_y_data = diff_y->data<T>();
  T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
196

197
  std::vector<int> diff_dst_tz = framework::vectorize2int(diff_y->dims());
K
Krzysztof Binias 已提交
198

199 200
  auto diff_y_format =
      diff_dst_tz.size() == 2 ? mkldnn::memory::format::nc : diff_y->format();
K
Krzysztof Binias 已提交
201

202
  const std::string key = gethash(diff_dst_tz, algorithm);
K
Krzysztof Binias 已提交
203 204
  const std::string key_src_data =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_data";
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  const std::string key_src_layout =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_layout";
  const auto p_src_layout =
      std::static_pointer_cast<memory::format>(dev_ctx.GetBlob(key_src_layout));
  const std::string key_src_mem =
      key + std::to_string(*p_src_layout) + "@eltwise_fwd_src_mem";
  const std::string key_fwd_pd =
      key + std::to_string(*p_src_layout) + "@eltwise_fwd_pd";
  const std::string key_with_layouts =
      key + std::to_string(*p_src_layout) + "-" + std::to_string(diff_y_format);
  const std::string key_diff_src_mem =
      key_with_layouts + "@eltwise_diff_src_mem";
  const std::string key_diff_dst_mem =
      key_with_layouts + "@eltwise_diff_dst_mem";
  const std::string key_grad = key_with_layouts + "@eltwise_grad";

K
Krzysztof Binias 已提交
221 222 223
  const auto p_src_data =
      std::static_pointer_cast<T *>(dev_ctx.GetBlob(key_src_data));

224
  auto src_memory =
K
Krzysztof Binias 已提交
225
      std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
226 227 228 229 230
  PADDLE_ENFORCE(src_memory != nullptr,
                 "Fail to find src_memory in device context");
  src_memory->set_data_handle(*p_src_data.get());

  std::shared_ptr<memory> diff_src_memory;
K
Krzysztof Binias 已提交
231

232
  auto p_grad = std::static_pointer_cast<mkldnn::eltwise_backward>(
K
Krzysztof Binias 已提交
233 234 235
      dev_ctx.GetBlob(key_grad));

  if (p_grad == nullptr) {
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    // create mkldnn memory for input diff_y
    auto diff_dst_md = platform::MKLDNNMemDesc(
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), diff_y_format);
    auto diff_dst_memory = std::shared_ptr<memory>(
        new memory({diff_dst_md, mkldnn_engine}, to_void_cast(diff_y_data)));
    dev_ctx.SetBlob(key_diff_dst_mem, diff_dst_memory);

    // retrieve eltwise primitive desc from device context
    auto forward_pd =
        std::static_pointer_cast<mkldnn::eltwise_forward::primitive_desc>(
            dev_ctx.GetBlob(key_fwd_pd));
    PADDLE_ENFORCE(forward_pd != nullptr,
                   "Fail to find eltwise_fwd_pd in device context");

    // ceate primitive descriptor for activation backward
    auto backward_desc = mkldnn::eltwise_backward::desc(
        algorithm, diff_dst_memory->get_primitive_desc().desc(),
        src_memory->get_primitive_desc().desc(), alpha, beta);
    auto backward_pd = mkldnn::eltwise_backward::primitive_desc(
        backward_desc, mkldnn_engine, *forward_pd);

    // create mkldnn memory for output diff_src
    diff_src_memory = std::make_shared<memory>(
        backward_pd.diff_src_primitive_desc(), diff_x_data);
    dev_ctx.SetBlob(key_diff_src_mem, diff_src_memory);

    // create activation backward primitive
K
Krzysztof Binias 已提交
263
    p_grad = std::make_shared<mkldnn::eltwise_backward>(
264 265
        backward_pd, *src_memory, *diff_dst_memory, *diff_src_memory);
    dev_ctx.SetBlob(key_grad, p_grad);
K
Krzysztof Binias 已提交
266 267
  } else {
    // primitives already exist
268
    diff_src_memory = std::static_pointer_cast<mkldnn::memory>(
K
Krzysztof Binias 已提交
269
        dev_ctx.GetBlob(key_diff_src_mem));
270
    auto diff_dst_memory = std::static_pointer_cast<mkldnn::memory>(
K
Krzysztof Binias 已提交
271 272
        dev_ctx.GetBlob(key_diff_dst_mem));

273 274 275 276
    diff_src_memory->set_data_handle(
        platform::to_void_reinterpret_cast(diff_x_data));
    diff_dst_memory->set_data_handle(
        platform::to_void_reinterpret_cast(diff_y_data));
K
Krzysztof Binias 已提交
277
  }
278 279

  // push primitive to stream and wait until it's executed
280 281 282 283 284 285
  std::vector<primitive> pipeline;
  pipeline.push_back(*p_grad);
  stream(stream::kind::eager).submit(pipeline).wait();

  diff_x->set_layout(DataLayout::kMKLDNN);
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory));
286 287 288 289
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
290
  void operator()(const framework::ExecutionContext &ctx) const {
291 292 293 294 295 296
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
297
  void operator()(const framework::ExecutionContext &ctx) const {
298 299 300 301 302
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
T
tensor-tang 已提交
303
using ReluMKLDNNFunctor =
304 305 306
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
307
using TanhMKLDNNFunctor =
308 309 310
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
311
using SqrtMKLDNNFunctor =
312 313 314
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
315
using AbsMKLDNNFunctor =
316 317 318
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
T
tensor-tang 已提交
319
using ReluMKLDNNGradFunctor =
320 321 322
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
323
using TanhMKLDNNGradFunctor =
324 325 326
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
327
using SqrtMKLDNNGradFunctor =
328 329 330
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
331
using AbsMKLDNNGradFunctor =
332 333 334 335 336 337 338 339 340 341 342 343 344
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

K
Krzysztof Binias 已提交
345
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)            \
T
tensor-tang 已提交
346 347 348 349
  __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
350 351

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);