test_activation_sparse_op.py 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from op_test import OpTest
import paddle


class TestSparseSquareOp(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7]
        self.row_numel = 12

        x_selected_rows = scope.var('X').get_selected_rows()
        x_selected_rows.set_height(height)
        x_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), self.row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        x_tensor = x_selected_rows.get_tensor()
        x_tensor.set(np_array, place)

        out_selected_rows = scope.var('Out').get_selected_rows()
        # create and run sqrt operator
        square_op = Operator("square", X='X', Out='Out')
        square_op.run(scope, place)

        # get and compare result
        result_array = np.array(out_selected_rows.get_tensor())

        self.assertTrue(np.array_equal(result_array, np.square(np_array)))

    def test_sparse_acti(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseSqrtOp(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7]
        self.row_numel = 12

        x_selected_rows = scope.var('X1').get_selected_rows()
        x_selected_rows.set_height(height)
        x_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), self.row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        x_tensor = x_selected_rows.get_tensor()
        x_tensor.set(np_array, place)

        out_selected_rows = scope.var('Out1').get_selected_rows()
        # create and run sqrt operator
        sqrt_op = Operator("sqrt", X='X1', Out='Out1')
        sqrt_op.run(scope, place)

        # get and compare result
        result_array = np.array(out_selected_rows.get_tensor())
        self.assertTrue(np.allclose(result_array, np.sqrt(np_array)))

    def test_sparse_acti(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()