activation_grad_kernel.cu 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/activation_grad_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/impl/activation_grad_impl.h"

#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationGradGPUImpl(const Context& dev_ctx,
                           const DenseTensor* x,
                           const DenseTensor* out,
                           const DenseTensor* d_out,
                           DenseTensor* d_x,
                           const Functor& functor) {
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepOut)) {
    PADDLE_ENFORCE_NOT_NULL(
        out, errors::NotFound("The input DenseTensor Out can not be nullptr"));
  }
  PADDLE_ENFORCE_NOT_NULL(
      d_out, errors::NotFound("The input DenseTensor dOut can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      d_x, errors::NotFound("The output DenseTensor dX can not be nullptr"));
  if (!out) {
    out = d_out;  // fake out
  }
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepX)) {
    PADDLE_ENFORCE_NOT_NULL(
        x, errors::NotFound("The input DenseTensor X can not be nullptr"));
  } else {
    VLOG(10) << "Inplace activation of Op Functor: " << typeid(Functor).name();
    x = d_x;
  }

  dev_ctx.template Alloc<T>(d_x);

  std::vector<const DenseTensor*> ins = {d_out};
  std::vector<DenseTensor*> outs = {d_x};

  if (static_cast<int>(Functor::FwdDeps()) ==
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepOut)) {
    // Only need forward output Out
    ins.push_back(out);
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  } else if (static_cast<int>(Functor::FwdDeps()) ==
             static_cast<int>(funcs::ActBwdOpFwdDeps::kDepX)) {
    // Only need forward input X
    ins.push_back(x);
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  } else {
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  }
}

Y
YuanRisheng 已提交
76
#define DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(name, functor_class) \
77 78 79 80 81
  template <typename T, typename Context>                           \
  void name##GradKernel(const Context& dev_ctx,                     \
                        const DenseTensor& x,                       \
                        const DenseTensor& dout,                    \
                        DenseTensor* dx) {                          \
82 83
    funcs::functor_class<T> functor;                                \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>(     \
84 85 86
        dev_ctx, &x, nullptr, &dout, dx, functor);                  \
  }

Y
YuanRisheng 已提交
87
#define DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(         \
88 89 90 91 92 93 94 95 96 97 98 99 100 101
    name, functor_class, attr)                                  \
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& x,                   \
                        const DenseTensor& dout,                \
                        float attr,                             \
                        DenseTensor* dx) {                      \
    funcs::functor_class<T> functor;                            \
    auto attrs = functor.GetAttrs();                            \
    *(attrs[0].second) = attr;                                  \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, &x, nullptr, &dout, dx, functor);              \
  }

Y
YuanRisheng 已提交
102
#define DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(         \
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    name, functor_class, attr1, attr2)                          \
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& x,                   \
                        const DenseTensor& dout,                \
                        float attr1,                            \
                        float attr2,                            \
                        DenseTensor* dx) {                      \
    funcs::functor_class<T> functor;                            \
    auto attrs = functor.GetAttrs();                            \
    *(attrs[0].second) = attr1;                                 \
    *(attrs[1].second) = attr2;                                 \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, &x, nullptr, &dout, dx, functor);              \
  }

Y
YuanRisheng 已提交
119
#define DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(name, functor_class) \
120 121 122 123 124
  template <typename T, typename Context>                             \
  void name##GradKernel(const Context& dev_ctx,                       \
                        const DenseTensor& out,                       \
                        const DenseTensor& dout,                      \
                        DenseTensor* dx) {                            \
125 126
    funcs::functor_class<T> functor;                                  \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>(       \
127 128 129
        dev_ctx, nullptr, &out, &dout, dx, functor);                  \
  }

Y
YuanRisheng 已提交
130
#define DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT(       \
131 132 133 134 135 136 137 138 139 140 141 142 143 144
    name, functor_class, attr)                                  \
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& out,                 \
                        const DenseTensor& dout,                \
                        float attr,                             \
                        DenseTensor* dx) {                      \
    funcs::functor_class<T> functor;                            \
    auto attrs = functor.GetAttrs();                            \
    *(attrs[0].second) = attr;                                  \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, nullptr, &out, &dout, dx, functor);            \
  }

Y
YuanRisheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#define DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(       \
    name, functor_class, attr1, attr2)                          \
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& out,                 \
                        const DenseTensor& dout,                \
                        float attr1,                            \
                        float attr2,                            \
                        DenseTensor* dx) {                      \
    funcs::functor_class<T> functor;                            \
    auto attrs = functor.GetAttrs();                            \
    *(attrs[0].second) = attr1;                                 \
    *(attrs[1].second) = attr2;                                 \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, nullptr, &out, &dout, dx, functor);            \
  }

Y
YuanRisheng 已提交
162 163 164 165 166 167 168 169 170
#define DEFINE_GPU_ACTIVATION_GRAD_KERNEL_NODEP(name, functor_class)      \
  template <typename T, typename Context>                                 \
  void name##GradKernel(                                                  \
      const Context& dev_ctx, const DenseTensor& dout, DenseTensor* dx) { \
    funcs::functor_class<T> functor;                                      \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>(           \
        dev_ctx, nullptr, nullptr, &dout, dx, functor);                   \
  }

Y
YuanRisheng 已提交
171 172
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu, CudaReluGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh, CudaTanhGradFunctor);
Y
YuanRisheng 已提交
173 174
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Sigmoid, CudaSigmoidGradFunctor);

Y
YuanRisheng 已提交
175 176 177 178
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_NODEP(Round, CudaZeroGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_NODEP(Floor, CudaZeroGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_NODEP(Ceil, CudaZeroGradFunctor);

Y
YuanRisheng 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Cos, CudaCosGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Tan, CudaTanGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Acos, CudaAcosGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Sin, CudaSinGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Asin, CudaAsinGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Atan, CudaAtanGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Sinh, CudaSinhGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Cosh, CudaCoshGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Asinh, CudaAsinhGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Acosh, CudaAcoshGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Atanh, CudaAtanhGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(TanhShrink, CudaTanhShrinkGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Silu, CudaSiluGradFunctor);
192 193 194 195 196 197 198
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Square, CudaSquareGradFunctor);

DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Exp, CudaExpGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Expm1, CudaExpm1GradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Reciprocal, CudaReciprocalGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Sqrt, CudaSqrtGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Rsqrt, CudaRsqrtGradFunctor);
Y
YuanRisheng 已提交
199
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(LogSigmoid, CudaLogSigmoidGradFunctor);
200 201 202 203
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Log, CudaLogGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Log2, CudaLog2GradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Log10, CudaLog10GradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Log1p, CudaLog1pGradFunctor);
Y
YuanRisheng 已提交
204 205

DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(LeakyRelu,
206 207
                                               CudaLeakyReluGradFunctor,
                                               alpha);
Y
YuanRisheng 已提交
208
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(ThresholdedRelu,
209 210
                                               CudaThresholdedReluGradFunctor,
                                               threshold);
Y
YuanRisheng 已提交
211 212 213 214 215 216
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(SoftShrink,
                                               CudaSoftShrinkGradFunctor,
                                               lambda);
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(HardShrink,
                                               CudaHardShrinkGradFunctor,
                                               threshold);
Y
YuanRisheng 已提交
217 218 219
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Swish,
                                               CudaSwishGradFunctor,
                                               beta);
220

221 222 223 224
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Mish,
                                               CudaMishGradFunctor,
                                               threshold);

Y
YuanRisheng 已提交
225
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(BRelu,
226 227 228
                                               CudaBReluGradFunctor,
                                               t_min,
                                               t_max);
229

230 231 232 233 234 235 236 237 238
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(STanh,
                                               CudaSTanhGradFunctor,
                                               scale_a,
                                               scale_b);

DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(Softplus,
                                               CudaSoftplusGradFunctor,
                                               beta,
                                               threshold);
Y
YuanRisheng 已提交
239 240 241 242 243
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(HardSigmoid,
                                                 CudaHardSigmoidGradFunctor,
                                                 slope,
                                                 offset);

Y
YuanRisheng 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
template <typename T, typename Context>
void EluGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& out,
                   const DenseTensor& dout,
                   float alpha,
                   DenseTensor* dx) {
  dev_ctx.template Alloc<T>(dx);
  std::vector<const DenseTensor*> ins = {&dout, &out};
  std::vector<DenseTensor*> outs = {dx};
  if (alpha > 0) {
    funcs::CudaELUGradFunctor<T> functor;
    functor.alpha = alpha;
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  } else {
    funcs::CudaELUGradNegativeAlphaFunctor<T> functor;
    functor.alpha = alpha;
    ins.push_back(&x);
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  }
}

Y
YuanRisheng 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         float threshold,
                         float scale,
                         float offset,
                         DenseTensor* dx) {
  funcs::CudaHardSwishGradFunctor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = threshold;
  *(attrs[1].second) = scale;
  *(attrs[2].second) = offset;
  ActivationGradGPUImpl<T, Context, funcs::CudaHardSwishGradFunctor<T>>(
      dev_ctx, &x, nullptr, &dout, dx, functor);
}

283
}  // namespace phi
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(relu_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
PD_REGISTER_KERNEL(relu_double_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluDoubleGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(relu_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(relu_double_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluDoubleGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#endif
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

#define PD_REGISTER_ACTIVATION_GRAD_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name,                             \
                     GPU,                              \
                     ALL_LAYOUT,                       \
                     phi::func,                        \
                     float,                            \
                     double,                           \
                     phi::dtype::float16,              \
                     phi::dtype::bfloat16) {}

PD_REGISTER_ACTIVATION_GRAD_KERNEL(sin_grad, SinGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(cos_grad, CosGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tan_grad, TanGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(acos_grad, AcosGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(asin_grad, AsinGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(atan_grad, AtanGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sinh_grad, SinhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(cosh_grad, CoshGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(asinh_grad, AsinhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(acosh_grad, AcoshGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(atanh_grad, AtanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_grad, TanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_double_grad, TanhDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_triple_grad, TanhTripleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(brelu_grad, BReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(leaky_relu_grad, LeakyReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(leaky_relu_double_grad,
                                   LeakyReluDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(thresholded_relu_grad,
                                   ThresholdedReluGradKernel)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
PD_REGISTER_ACTIVATION_GRAD_KERNEL(mish_grad, MishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(stanh_grad, STanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(reciprocal_grad, ReciprocalGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(softplus_grad, SoftplusGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sqrt_grad, SqrtGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(rsqrt_grad, RsqrtGradKernel)

PD_REGISTER_KERNEL(exp_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ExpGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16) {}

Y
YuanRisheng 已提交
366 367 368 369 370 371
PD_REGISTER_ACTIVATION_GRAD_KERNEL(soft_shrink_grad, SoftShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_shrink_grad, HardShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_shrink_grad, TanhShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(silu_grad, SiluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(elu_grad, EluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(elu_double_grad, EluDoubleGradKernel)
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

PD_REGISTER_KERNEL(expm1_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::Expm1GradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(logit_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LogitGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(square_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::SquareGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

Y
YuanRisheng 已提交
400 401 402 403 404
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_grad, SigmoidGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_double_grad, SigmoidDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_triple_grad, SigmoidTripleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_sigmoid_grad, HardSigmoidGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(logsigmoid_grad, LogSigmoidGradKernel)
405 406 407 408 409 410 411 412 413 414 415
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log_grad, LogGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log2_grad, Log2GradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log10_grad, Log10GradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log1p_grad, Log1pGradKernel)
PD_REGISTER_KERNEL(log_double_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LogDoubleGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
Y
YuanRisheng 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_swish_grad, HardSwishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(swish_grad, SwishGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(round_grad, RoundGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(floor_grad, FloorGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(ceil_grad, CeilGradKernel)

PD_REGISTER_KERNEL(pow_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::PowGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16) {}