selected_rows_functor.cc 35.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16
#include "paddle/fluid/framework/mixed_vector.h"
17
#include "paddle/fluid/platform/device/device_wrapper.h"
18

L
lidanqing 已提交
19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

23 24 25 26
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
27 28
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
29 30
                  const phi::SelectedRows& input1,
                  const phi::SelectedRows& input2, phi::SelectedRows* output) {
31
    auto in1_height = input1.height();
32 33 34 35 36 37
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
55 56 57 58 59 60 61 62 63 64 65 66
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
67 68

    auto in1_place = input1.place();
69 70 71
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
72
    auto in2_place = input2.place();
73 74 75
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
76
    auto out_place = context.GetPlace();
77 78 79
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
80 81 82

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
83
    memory::Copy(out_place, out_data, in1_place, in1_data,
84 85 86
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
87
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
88 89 90 91
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
92 93
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
94 95

template <typename T>
Q
QI JUN 已提交
96 97
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
98
                  const phi::SelectedRows& input1,
99 100 101 102
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
103 104 105 106 107 108 109 110 111 112 113 114
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
115 116 117 118 119

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
120 121 122 123 124 125 126 127 128 129 130 131
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
132

133
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
134 135 136 137 138 139 140 141 142 143 144 145 146 147
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
148
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
149 150 151
  }
};

Q
QI JUN 已提交
152 153
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
154 155

template <typename T>
Q
QI JUN 已提交
156 157
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
158 159
                  const phi::SelectedRows& input1, const int64_t input2_offset,
                  phi::SelectedRows* input2) {
Q
QI JUN 已提交
160
    auto in1_height = input1.height();
161 162 163 164 165 166
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
167 168 169 170 171 172 173 174

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
175 176
    paddle::framework::MixVector<int64_t> mixv_in2_rows(&in2_rows);
    mixv_in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
177 178

    auto in1_place = input1.place();
179 180 181
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
182
    auto in2_place = input2->place();
183 184 185
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
186 187 188

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
189
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
190 191 192 193
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
194 195 196 197
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
198

M
minqiyang 已提交
199 200 201
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
202
                  const std::vector<phi::SelectedRows*>& input1,
M
minqiyang 已提交
203
                  const std::vector<int64_t>& input2_offsets,
204
                  phi::SelectedRows* input2) {
M
minqiyang 已提交
205 206 207 208 209 210
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
211 212 213 214 215 216
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
217 218 219 220 221 222 223 224 225 226 227 228
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
229
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
M
minqiyang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
243
template <typename T>
Q
QI JUN 已提交
244 245
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
246
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
Q
Qiao Longfei 已提交
247
    if (UNLIKELY(input1.rows().size() == 0)) {
248 249 250
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
251 252
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
253 254 255 256 257 258
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
259 260 261 262 263

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
264 265 266 267 268 269
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

H
hong 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
template <typename T>
struct SelectedRowsAddToTensor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext& context,
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
    if (UNLIKELY(input1.rows().size() == 0)) {
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
323 324 325 326
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
327 328
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
329

H
hong 已提交
330 331 332 333 334
template struct SelectedRowsAddToTensor<phi::CPUContext, float>;
template struct SelectedRowsAddToTensor<phi::CPUContext, double>;
template struct SelectedRowsAddToTensor<phi::CPUContext, int>;
template struct SelectedRowsAddToTensor<phi::CPUContext, int64_t>;
template struct SelectedRowsAddToTensor<phi::CPUContext, platform::bfloat16>;
T
typhoonzero 已提交
335 336 337 338 339 340 341 342
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

343
template <typename T, typename DeviceContext>
344
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
345 346
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
347
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
348 349
}

350
template <typename T, typename DeviceContext>
351
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
352 353
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
T
Tao Luo 已提交
354
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
355 356
    out[i] += in[i];
  }
T
typhoonzero 已提交
357 358
}

359
template <typename T, typename DeviceContext>
360
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
361
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
362
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
363 364
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
365
#ifndef PADDLE_WITH_MKLDNN
366
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
385 386 387
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
388 389 390 391 392
    }
#endif
  }
}

393
template <typename T, typename DeviceContext>
394
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
395
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
396
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
397 398
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
399
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
400
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
401 402 403 404 405 406 407 408 409
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
410 411 412
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
413 414 415 416
    }
  }
}

417 418 419
template <typename DeviceContext, typename T>
struct MergeAddImpl {
  phi::SelectedRows operator()(const DeviceContext& context,
420 421 422
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
423
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
424 425 426
    return out;
  }

427 428
  void operator()(const DeviceContext& context, const phi::SelectedRows& input,
                  phi::SelectedRows* output, const bool sorted_result = false) {
429
    std::vector<const phi::SelectedRows*> inputs;
430
    inputs.push_back(&input);
431
    (*this)(context, inputs, output, sorted_result);
432
  }
T
typhoonzero 已提交
433

434
  void operator()(const DeviceContext& context,
435 436
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
Q
Qiao Longfei 已提交
437
    if (inputs.size() == 0) {
M
minqiyang 已提交
438
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
439 440
      return;
    }
441
    const phi::SelectedRows* has_value_input = nullptr;
Q
Qiao Longfei 已提交
442
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
443
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
444 445 446 447 448
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
449
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
450 451 452 453
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
454
    phi::SelectedRows& out = *output;
455
    std::set<int64_t> merged_row_set;
456
    size_t row_num = 0;
457
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
458
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
459 460
        continue;
      }
461
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
462 463 464
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
465
      PADDLE_ENFORCE_EQ(input_height, input->height(),
466 467
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
468
      row_num += input->rows().size();
469 470
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
471

472
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
473
    out.mutable_value()->mutable_data<T>(
474
        phi::make_ddim(
475
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
476
        context.GetPlace());
477
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
494
        auto in_numel = in->rows().size() * input_width;
495
        memory::Copy(out_place, out_data + copied_numel, in_place, in_data,
496 497 498 499 500 501
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
502

503 504 505
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
506

507 508
      out.set_rows(merge_rows);

509
      phi::funcs::SetConstant<DeviceContext, T> constant_functor;
510
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
511 512 513 514

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
515
      }
516

517 518
      add_sparse_inputs<T, DeviceContext>(inputs, rows_to_id, input_width,
                                          context, out_data);
T
typhoonzero 已提交
519
    }
T
wip  
typhoonzero 已提交
520 521 522
  }
};

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<platform::CPUDeviceContext, T>()(context, input,
                                                         sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, input, output,
                                                  sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, inputs, output,
                                                  sorted_result);
  }
};

template <typename T>
struct MergeAdd<phi::CPUContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const phi::CPUContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<phi::CPUContext, T>()(context, input, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, input, output, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, inputs, output, sorted_result);
  }
};

#define TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(dtype)               \
  template struct MergeAddImpl<platform::CPUDeviceContext, dtype>; \
  template struct MergeAddImpl<phi::CPUContext, dtype>;            \
  template struct MergeAdd<platform::CPUDeviceContext, dtype>;     \
  template struct MergeAdd<phi::CPUContext, dtype>;

TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(float)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(double)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int64_t)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::bfloat16)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<float>)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<double>)

586 587 588
#ifdef PADDLE_WITH_XPU
template <typename T>
struct MergeAdd<platform::XPUDeviceContext, T> {
589 590 591 592
  phi::SelectedRows operator()(const platform::XPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
593 594 595 596 597
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const platform::XPUDeviceContext& context,
598
                  const phi::SelectedRows& input, phi::SelectedRows* output,
599 600 601 602 603 604
                  const bool sorted_result = false) {
    framework::Vector<int64_t> input_rows(input.rows());
    if (input_rows.size() == 0) {
      return;
    }

605
    phi::SelectedRows& out = *output;
606 607 608 609 610 611 612
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
    auto input_width = input.value().dims()[1];

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
613
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
614 615 616 617 618 619 620
        context.GetPlace());

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

621 622 623 624
    auto* y_data = out.mutable_value()->data<T>();
    auto* x_data = input.value().data<T>();
    int xm = input_rows.size();
    int ym = merge_rows.size();
625
    int n = input_width;
626 627 628 629 630 631 632 633 634 635 636 637

    xpu::ctx_guard RAII_GUARD(context.x_context());
    int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
    int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
    memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                 merge_rows.data(), ym * sizeof(int64_t));
    memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                 input_rows.data(), xm * sizeof(int64_t));
    int r =
        xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                        x_rows_data, y_rows_data, xm, n, ym);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
638 639 640
  }

  void operator()(const platform::XPUDeviceContext& context,
641 642
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
643 644 645 646
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
647
    const phi::SelectedRows* has_value_input = nullptr;
648 649 650 651 652 653 654 655 656 657 658 659
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
660
    phi::SelectedRows& out = *output;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());

    if (sorted_result) {
      std::sort(merge_rows.begin(), merge_rows.end());
    }

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
688
        phi::make_ddim(
689 690 691
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());

692
    float* y_data = reinterpret_cast<float*>(out.mutable_value()->data<T>());
693 694 695 696 697 698 699 700 701 702 703 704

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto& input_rows = input->rows();

705 706 707
      auto* x_data = input->value().data<T>();
      int xm = input_rows.size();
      int ym = merge_rows.size();
708
      int n = input_width;
709 710 711 712 713 714 715 716 717 718 719 720

      xpu::ctx_guard RAII_GUARD(context.x_context());
      int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
      int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
      memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                   merge_rows.data(), ym * sizeof(int64_t));
      memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                   input_rows.data(), xm * sizeof(int64_t));
      int r =
          xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                          x_rows_data, y_rows_data, xm, n, ym);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
721 722 723 724 725
    }
  }
};

#endif
726 727
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
728 729 730
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input) {
    phi::SelectedRows out;
731 732 733 734 735
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
736 737
                  const phi::SelectedRows& input, phi::SelectedRows* output) {
    std::vector<const phi::SelectedRows*> inputs;
738 739 740 741 742
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
743 744
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output) {
745 746 747 748
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
749
    const phi::SelectedRows* has_value_input = nullptr;
750 751 752 753 754 755 756 757 758 759 760 761
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
762
    phi::SelectedRows& out = *output;
763 764 765 766 767 768 769
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
770 771 772
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
773
      PADDLE_ENFORCE_EQ(input_height, input->height(),
774 775
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
776 777 778 779 780 781
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
782
        phi::make_ddim(
783 784 785 786 787 788 789 790 791 792
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

793
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
794 795 796 797 798 799 800
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

801
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
802 803 804 805 806 807 808 809 810
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
811 812 813
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
814 815 816 817 818 819 820 821 822 823 824 825
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

826 827 828 829
#ifdef PADDLE_WITH_XPU
template struct MergeAdd<platform::XPUDeviceContext, float>;
#endif

830 831 832 833 834
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
835 836
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
837
  void operator()(const platform::CPUDeviceContext& context,
838
                  const ScatterOps& op, const phi::SelectedRows& input1,
T
typhoonzero 已提交
839
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
840 841
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
842 843 844 845 846 847
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
848 849 850 851 852

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
853 854 855 856 857 858
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
903 904 905 906
  }
};

}  // namespace scatter
907 908 909
}  // namespace math
}  // namespace operators
}  // namespace paddle