support_new_device.html 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Design Doc: Supporting new Device/Library &mdash; PaddlePaddle  文档</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_cn.html">MOBILE</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html">PaddlePaddle分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
162 163 164 165 166 167 168 169 170 171 172 173 174
<li class="toctree-l2"><a class="reference internal" href="../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_cn.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
211
    <li>Design Doc: Supporting new Device/Library</li>
212 213 214 215 216 217 218 219
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
220 221
  <div class="section" id="design-doc-supporting-new-device-library">
<span id="design-doc-supporting-new-device-library"></span><h1>Design Doc: Supporting new Device/Library<a class="headerlink" href="#design-doc-supporting-new-device-library" title="永久链接至标题"></a></h1>
222 223
<div class="section" id="background">
<span id="background"></span><h2>Background<a class="headerlink" href="#background" title="永久链接至标题"></a></h2>
224 225 226
<p>Deep learning has a high demand for computing resources. New high-performance devices and computing libraries are appearing very frequently. Deep learning frameworks have to integrate these high-performance devices and computing libraries flexibly and efficiently.</p>
<p>On one hand, hardware and computing libraries usually do not have a one-to-one correspondence. For example,Intel CPUs support Eigen and MKL computing libraries while Nvidia GPUs support Eigen and cuDNN computing libraries. We have to implement operator specific kernels for each computing library.</p>
<p>On the other hand, users usually do not want to care about the low-level hardware and computing libraries when writing a neural network configuration. In Fluid, <code class="docutils literal"><span class="pre">Layer</span></code> is exposed in <code class="docutils literal"><span class="pre">Python</span></code>, and <code class="docutils literal"><span class="pre">Operator</span></code> is exposed in <code class="docutils literal"><span class="pre">C++</span></code>. Both <code class="docutils literal"><span class="pre">Layer</span></code> and <code class="docutils literal"><span class="pre">Operator</span></code> are hardware independent.</p>
227 228 229 230
<p>So, how to support a new Device/Library in Fluid becomes a challenge.</p>
</div>
<div class="section" id="basic-integrate-a-new-device-library">
<span id="basic-integrate-a-new-device-library"></span><h2>Basic: Integrate A New Device/Library<a class="headerlink" href="#basic-integrate-a-new-device-library" title="永久链接至标题"></a></h2>
231 232
<p>For a general overview of fluid, please refer to the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/read_source.md">overview doc</a>.</p>
<p>There are mainly three parts that we have to consider while integrating a new device/library:</p>
233 234 235
<ul class="simple">
<li>Place and DeviceContext: indicates the device id and manages hardware resources</li>
<li>Memory and Tensor: malloc/free data on certain device</li>
236
<li>Math Functor and OpKernel: implement computing unit on certain devices/libraries</li>
237 238 239 240 241
</ul>
<div class="section" id="place-and-devicecontext">
<span id="place-and-devicecontext"></span><h3>Place and DeviceContext<a class="headerlink" href="#place-and-devicecontext" title="永久链接至标题"></a></h3>
<div class="section" id="place">
<span id="place"></span><h4>Place<a class="headerlink" href="#place" title="永久链接至标题"></a></h4>
242
<p>Fluid uses class <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L55">Place</a> to represent different devices and computing libraries. There are inheritance relationships between different kinds of <code class="docutils literal"><span class="pre">Place</span></code>.</p>
243 244 245 246 247 248 249 250 251 252 253 254
<div class="highlight-default"><div class="highlight"><pre><span></span>        <span class="o">|</span>   <span class="n">CPUPlace</span>   <span class="o">--&gt;</span> <span class="n">MKLDNNPlace</span>
<span class="n">Place</span> <span class="o">--|</span>   <span class="n">CUDAPlace</span>  <span class="o">--&gt;</span> <span class="n">CUDNNPlace</span>
        <span class="o">|</span>   <span class="n">FPGAPlace</span>
</pre></div>
</div>
<p>And <code class="docutils literal"><span class="pre">Place</span></code> is defined as follows:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">typedef</span> <span class="n">boost</span><span class="p">::</span><span class="n">variant</span><span class="o">&lt;</span><span class="n">CUDAPlace</span><span class="p">,</span> <span class="n">CPUPlace</span><span class="p">,</span> <span class="n">FPGAPlace</span><span class="o">&gt;</span> <span class="n">Place</span><span class="p">;</span>
</pre></div>
</div>
</div>
<div class="section" id="devicecontext">
<span id="devicecontext"></span><h4>DeviceContext<a class="headerlink" href="#devicecontext" title="永久链接至标题"></a></h4>
255
<p>Fluid uses class <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L30">DeviceContext</a> to manage the resources in different hardwares, such as CUDA stream in <code class="docutils literal"><span class="pre">CDUADeviceContext</span></code>. There are also inheritance relationships between different kinds of <code class="docutils literal"><span class="pre">DeviceContext</span></code>.</p>
256 257 258 259 260
<div class="highlight-default"><div class="highlight"><pre><span></span>                <span class="o">/-&gt;</span>  <span class="n">CPUDeviceContext</span>   <span class="o">--&gt;</span> <span class="n">MKLDeviceContext</span>
<span class="n">DeviceContext</span> <span class="o">----&gt;</span>  <span class="n">CUDADeviceContext</span>  <span class="o">--&gt;</span> <span class="n">CUDNNDeviceContext</span>
                \<span class="o">-&gt;</span>  <span class="n">FPGADeviceContext</span>
</pre></div>
</div>
261
<p>An example of Nvidia GPU is as follows:</p>
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
<ul class="simple">
<li>DeviceContext</li>
</ul>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">DeviceContext</span> <span class="p">{</span>
  <span class="n">virtual</span> <span class="n">Place</span> <span class="n">GetPlace</span><span class="p">()</span> <span class="n">const</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="p">};</span>  
</pre></div>
</div>
<ul class="simple">
<li>CUDADeviceContext</li>
</ul>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">CUDADeviceContext</span> <span class="p">:</span> <span class="n">public</span> <span class="n">DeviceContext</span> <span class="p">{</span>
  <span class="n">Place</span> <span class="n">GetPlace</span><span class="p">()</span> <span class="n">const</span> <span class="n">override</span> <span class="p">{</span> <span class="k">return</span> <span class="n">place_</span><span class="p">;</span> <span class="p">}</span>
<span class="n">private</span><span class="p">:</span>
  <span class="n">CUDAPlace</span> <span class="n">place_</span><span class="p">;</span>
  <span class="n">cudaStream_t</span> <span class="n">stream_</span><span class="p">;</span> 
  <span class="n">cublasHandle_t</span> <span class="n">cublas_handle_</span><span class="p">;</span>
  <span class="n">std</span><span class="p">::</span><span class="n">unique_ptr</span><span class="o">&lt;</span><span class="n">Eigen</span><span class="p">::</span><span class="n">GpuDevice</span><span class="o">&gt;</span> <span class="n">eigen_device_</span><span class="p">;</span>  <span class="o">//</span> <span class="n">binds</span> <span class="k">with</span> <span class="n">stream_</span>
<span class="p">};</span>
</pre></div>
</div>
<ul class="simple">
<li>CUDNNDeviceContext</li>
</ul>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">CUDNNDeviceContext</span> <span class="p">:</span> <span class="n">public</span> <span class="n">CUDADeviceContext</span> <span class="p">{</span>
  <span class="n">private</span><span class="p">:</span>
    <span class="n">cudnnHandle_t</span> <span class="n">cudnn_handle_</span><span class="p">;</span>
<span class="p">};</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="memory-and-tensor">
<span id="memory-and-tensor"></span><h3>Memory and Tensor<a class="headerlink" href="#memory-and-tensor" title="永久链接至标题"></a></h3>
<div class="section" id="memory-module">
<span id="memory-module"></span><h4>memory module<a class="headerlink" href="#memory-module" title="永久链接至标题"></a></h4>
298
<p>Fluid provides the following <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/memory/memory.h#L36">memory interfaces</a>:</p>
299 300 301 302 303 304 305 306 307 308
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">template</span> <span class="o">&lt;</span><span class="n">typename</span> <span class="n">Place</span><span class="o">&gt;</span>
<span class="n">void</span><span class="o">*</span> <span class="n">Alloc</span><span class="p">(</span><span class="n">Place</span> <span class="n">place</span><span class="p">,</span> <span class="n">size_t</span> <span class="n">size</span><span class="p">);</span>

<span class="n">template</span> <span class="o">&lt;</span><span class="n">typename</span> <span class="n">Place</span><span class="o">&gt;</span>
<span class="n">void</span> <span class="n">Free</span><span class="p">(</span><span class="n">Place</span> <span class="n">place</span><span class="p">,</span> <span class="n">void</span><span class="o">*</span> <span class="n">ptr</span><span class="p">);</span>

<span class="n">template</span> <span class="o">&lt;</span><span class="n">typename</span> <span class="n">Place</span><span class="o">&gt;</span>
<span class="n">size_t</span> <span class="n">Used</span><span class="p">(</span><span class="n">Place</span> <span class="n">place</span><span class="p">);</span>
</pre></div>
</div>
309
<p>To implementing these interfaces, we have to implement MemoryAllocator for different Devices</p>
310 311 312
</div>
<div class="section" id="tensor">
<span id="tensor"></span><h4>Tensor<a class="headerlink" href="#tensor" title="永久链接至标题"></a></h4>
313
<p><a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/tensor.h#L36">Tensor</a> holds data with some shape in a specific Place.</p>
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Tensor</span> <span class="p">{</span>
 <span class="k">public</span><span class="o">:</span>
  <span class="cm">/*! Return a pointer to mutable memory block. */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">data</span><span class="p">();</span>

  <span class="cm">/**</span>
<span class="cm">   * @brief   Return a pointer to mutable memory block.</span>
<span class="cm">   * @note    If not exist, then allocation.</span>
<span class="cm">   */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">mutable_data</span><span class="p">(</span><span class="n">platform</span><span class="o">::</span><span class="n">Place</span> <span class="n">place</span><span class="p">);</span>

  <span class="cm">/**</span>
<span class="cm">   * @brief     Return a pointer to mutable memory block.</span>
<span class="cm">   *</span>
<span class="cm">   * @param[in] dims    The dimensions of the memory block.</span>
<span class="cm">   * @param[in] place   The place of the memory block.</span>
<span class="cm">   *</span>
<span class="cm">   * @note      If not exist, then allocation.</span>
<span class="cm">   */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">mutable_data</span><span class="p">(</span><span class="n">DDim</span> <span class="n">dims</span><span class="p">,</span> <span class="n">platform</span><span class="o">::</span><span class="n">Place</span> <span class="n">place</span><span class="p">);</span>

  <span class="cm">/*! Resize the dimensions of the memory block. */</span>
  <span class="kr">inline</span> <span class="n">Tensor</span><span class="o">&amp;</span> <span class="n">Resize</span><span class="p">(</span><span class="k">const</span> <span class="n">DDim</span><span class="o">&amp;</span> <span class="n">dims</span><span class="p">);</span>

  <span class="cm">/*! Return the dimensions of the memory block. */</span>
  <span class="kr">inline</span> <span class="k">const</span> <span class="n">DDim</span><span class="o">&amp;</span> <span class="n">dims</span><span class="p">()</span> <span class="k">const</span><span class="p">;</span>

 <span class="k">private</span><span class="o">:</span>
  <span class="cm">/*! holds the memory block if allocated. */</span>
  <span class="n">std</span><span class="o">::</span><span class="n">shared_ptr</span><span class="o">&lt;</span><span class="n">Placeholder</span><span class="o">&gt;</span> <span class="n">holder_</span><span class="p">;</span>

  <span class="cm">/*! points to dimensions of memory block. */</span>
  <span class="n">DDim</span> <span class="n">dim_</span><span class="p">;</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">Placeholder</span></code> is used to delay memory allocation; that is, we can first define a tensor, using <code class="docutils literal"><span class="pre">Resize</span></code> to configure its shape, and then call <code class="docutils literal"><span class="pre">mutuable_data</span></code> to allocate the actual memory.</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">paddle</span><span class="o">::</span><span class="n">framework</span><span class="o">::</span><span class="n">Tensor</span> <span class="n">t</span><span class="p">;</span>
<span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span> <span class="n">place</span><span class="p">;</span>
<span class="c1">// set size first</span>
<span class="n">t</span><span class="p">.</span><span class="n">Resize</span><span class="p">({</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">});</span>
<span class="c1">// allocate memory on CPU later</span>
<span class="n">t</span><span class="p">.</span><span class="n">mutable_data</span><span class="p">(</span><span class="n">place</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="math-functor-and-opkernel">
<span id="math-functor-and-opkernel"></span><h3>Math Functor and OpKernel<a class="headerlink" href="#math-functor-and-opkernel" title="永久链接至标题"></a></h3>
366
<p>Fluid implements computing units based on different DeviceContexts. Some computing units are shared between operators. This common part will be put in operators/math directory as basic Functors.</p>
367 368 369 370 371 372 373 374 375 376
<p>Let&#8217;s take <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/math/maxouting.h#L27">MaxOutFunctor</a> as an example:</p>
<p>The interface is defined in header file.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">template</span> <span class="o">&lt;</span><span class="n">typename</span> <span class="n">DeviceContext</span><span class="p">,</span> <span class="n">typename</span> <span class="n">T</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">MaxOutFunctor</span> <span class="p">{</span>
 <span class="n">public</span><span class="p">:</span>
  <span class="n">void</span> <span class="n">operator</span><span class="p">()(</span><span class="n">const</span> <span class="n">DeviceContext</span><span class="o">&amp;</span> <span class="n">context</span><span class="p">,</span> <span class="n">const</span> <span class="n">framework</span><span class="p">::</span><span class="n">Tensor</span><span class="o">&amp;</span> <span class="nb">input</span><span class="p">,</span>
                  <span class="n">framework</span><span class="p">::</span><span class="n">Tensor</span><span class="o">*</span> <span class="n">output</span><span class="p">,</span> <span class="nb">int</span> <span class="n">groups</span><span class="p">);</span>
<span class="p">};</span>
</pre></div>
</div>
377
<p>CPU implemention is in .cc file</p>
378 379 380 381 382 383 384 385 386 387 388
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">template</span> <span class="o">&lt;</span><span class="n">typename</span> <span class="n">T</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">MaxOutFunctor</span><span class="o">&lt;</span><span class="n">platform</span><span class="p">::</span><span class="n">CPUDeviceContext</span><span class="p">,</span> <span class="n">T</span><span class="o">&gt;</span> <span class="p">{</span>
  <span class="n">public</span><span class="p">:</span>
  <span class="n">void</span> <span class="n">operator</span><span class="p">()(</span><span class="n">const</span> <span class="n">platform</span><span class="p">::</span><span class="n">CPUDeviceContext</span><span class="o">&amp;</span> <span class="n">context</span><span class="p">,</span>
                  <span class="n">const</span> <span class="n">framework</span><span class="p">::</span><span class="n">Tensor</span><span class="o">&amp;</span> <span class="nb">input</span><span class="p">,</span> <span class="n">framework</span><span class="p">::</span><span class="n">Tensor</span><span class="o">*</span> <span class="n">output</span><span class="p">,</span>
                  <span class="nb">int</span> <span class="n">groups</span><span class="p">)</span> <span class="p">{</span>
                  <span class="o">...</span>
                  <span class="p">}</span>
<span class="p">};</span>
</pre></div>
</div>
389
<p>CUDA implemention is in .cu file</p>
390 391 392 393 394 395 396 397 398 399 400
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">template</span> <span class="o">&lt;</span><span class="n">typename</span> <span class="n">T</span><span class="o">&gt;</span>
<span class="k">class</span> <span class="nc">MaxOutFunctor</span><span class="o">&lt;</span><span class="n">platform</span><span class="p">::</span><span class="n">CUDADeviceContext</span><span class="p">,</span> <span class="n">T</span><span class="o">&gt;</span> <span class="p">{</span>
 <span class="n">public</span><span class="p">:</span>
  <span class="n">void</span> <span class="n">operator</span><span class="p">()(</span><span class="n">const</span> <span class="n">platform</span><span class="p">::</span><span class="n">CUDADeviceContext</span><span class="o">&amp;</span> <span class="n">context</span><span class="p">,</span>
                  <span class="n">const</span> <span class="n">framework</span><span class="p">::</span><span class="n">Tensor</span><span class="o">&amp;</span> <span class="nb">input</span><span class="p">,</span> <span class="n">framework</span><span class="p">::</span><span class="n">Tensor</span><span class="o">*</span> <span class="n">output</span><span class="p">,</span>
                  <span class="nb">int</span> <span class="n">groups</span><span class="p">)</span> <span class="p">{</span>
                  <span class="o">...</span>
                  <span class="p">}</span>
<span class="p">};</span>                  
</pre></div>
</div>
401 402 403
<p>We get computing handle from a concrete DeviceContext, and make compution on tensors.</p>
<p>The implemention of <code class="docutils literal"><span class="pre">OpKernel</span></code> is similar to math functors, the extra thing we need to do is to register the OpKernel in a global map.</p>
<p>Fluid provides different register interfaces in op_registry.h</p>
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
<p>Let&#8217;s take <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/crop_op.cc#L134">Crop</a> operator as an example:</p>
<p>In .cc file:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">REGISTER_OP_CPU_KERNEL</span><span class="p">(</span><span class="n">crop</span><span class="p">,</span> <span class="n">ops</span><span class="p">::</span><span class="n">CropKernel</span><span class="o">&lt;</span><span class="nb">float</span><span class="o">&gt;</span><span class="p">);</span>
<span class="n">REGISTER_OP_CPU_KERNEL</span><span class="p">(</span>
    <span class="n">crop_grad</span><span class="p">,</span> <span class="n">ops</span><span class="p">::</span><span class="n">CropGradKernel</span><span class="o">&lt;</span><span class="n">paddle</span><span class="p">::</span><span class="n">platform</span><span class="p">::</span><span class="n">CPUDeviceContext</span><span class="p">,</span> <span class="nb">float</span><span class="o">&gt;</span><span class="p">);</span>
</pre></div>
</div>
<p>In .cu file:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">REGISTER_OP_CUDA_KERNEL</span><span class="p">(</span><span class="n">crop</span><span class="p">,</span> <span class="n">ops</span><span class="p">::</span><span class="n">CropKernel</span><span class="o">&lt;</span><span class="nb">float</span><span class="o">&gt;</span><span class="p">);</span>
<span class="n">REGISTER_OP_CUDA_KERNEL</span><span class="p">(</span>
    <span class="n">crop_grad</span><span class="p">,</span> <span class="n">ops</span><span class="p">::</span><span class="n">CropGradKernel</span><span class="o">&lt;</span><span class="n">paddle</span><span class="p">::</span><span class="n">platform</span><span class="p">::</span><span class="n">CUDADeviceContext</span><span class="p">,</span> <span class="nb">float</span><span class="o">&gt;</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="advanced-topics-how-to-switch-between-different-device-library">
<span id="advanced-topics-how-to-switch-between-different-device-library"></span><h2>Advanced topics: How to switch between different Device/Library<a class="headerlink" href="#advanced-topics-how-to-switch-between-different-device-library" title="永久链接至标题"></a></h2>
421
<p>Generally, we will impelement OpKernel for all Device/Library of an Operator. We can easily train a Convolutional Neural Network in GPU. However, some OpKernel is not sutibale on a specific Device. For example, crf operator can only run on CPU, whereas most other operators can run at GPU. To achieve high performance in such circumstance, we have to switch between different Device/Library.</p>
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
<p>We will discuss how to implement an efficient OpKernel switch policy.</p>
<ul class="simple">
<li>TBD</li>
</ul>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>