conll05.py 6.7 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
import paddle.v2.dataset.common
import tarfile
import gzip
import itertools

__all__ = ['test, get_dict', 'get_embedding']
"""
Conll 2005 dataset.  Paddle semantic role labeling Book and demo use this
dataset as an example. Because Conll 2005 is not free in public, the default
downloaded URL is test set of Conll 2005 (which is public). Users can change
URL and MD5 to their Conll dataset.
"""

DATA_URL = 'http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz'
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
WORDDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/wordDict.txt'
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
VERBDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/verbDict.txt'
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
TRGDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/targetDict.txt'
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
EMB_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/emb'
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'

UNK_IDX = 0


def load_dict(filename):
    d = dict()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            d[line.strip()] = i
    return d


def corpus_reader(data_path, words_name, props_name):
    """
    Read one corpus by corpus name. It returns an iterator. Each element of
    this iterator is a tuple including sentence and labels. The sentence is
    consist of a list of word IDs. The labels include a list of label IDs.
    :param name: corpus name.
    :type name: basestring
    :return: a iterator of data.
    :rtype: iterator
    """

    def reader():
        tf = tarfile.open(data_path)
        wf = tf.extractfile(words_name)
        pf = tf.extractfile(props_name)
        with gzip.GzipFile(fileobj=wf) as words_file, gzip.GzipFile(
                fileobj=pf) as props_file:
            sentences = []
            labels = []
            one_seg = []
            for word, label in itertools.izip(words_file, props_file):
                word = word.strip()
                label = label.strip().split()

                if len(label) == 0:  # end of sentence
                    for i in xrange(len(one_seg[0])):
                        a_kind_lable = [x[i] for x in one_seg]
                        labels.append(a_kind_lable)

                    if len(labels) >= 1:
                        verb_list = []
                        for x in labels[0]:
                            if x != '-':
                                verb_list.append(x)

                        for i, lbl in enumerate(labels[1:]):
                            cur_tag = 'O'
                            is_in_bracket = False
                            lbl_seq = []
                            verb_word = ''
                            for l in lbl:
                                if l == '*' and is_in_bracket == False:
                                    lbl_seq.append('O')
                                elif l == '*' and is_in_bracket == True:
                                    lbl_seq.append('I-' + cur_tag)
                                elif l == '*)':
                                    lbl_seq.append('I-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') != -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') == -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = True
                                else:
                                    print 'error:', l

                            yield sentences, verb_list[i], lbl_seq

                    sentences = []
                    labels = []
                    one_seg = []
                else:
                    sentences.append(word)
                    one_seg.append(label)

    return reader


def reader_creator(corpus_reader,
                   word_dict=None,
                   predicate_dict=None,
                   label_dict=None):
    def reader():
        for sentence, predicate, labels in corpus_reader():

            sen_len = len(sentence)

            verb_index = labels.index('B-V')
            mark = [0] * len(labels)
            if verb_index > 0:
                mark[verb_index - 1] = 1
                ctx_n1 = sentence[verb_index - 1]
            else:
                ctx_n1 = 'bos'

            if verb_index > 1:
                mark[verb_index - 2] = 1
                ctx_n2 = sentence[verb_index - 2]
            else:
                ctx_n2 = 'bos'

            mark[verb_index] = 1
            ctx_0 = sentence[verb_index]

            if verb_index < len(labels) - 1:
                mark[verb_index + 1] = 1
                ctx_p1 = sentence[verb_index + 1]
            else:
                ctx_p1 = 'eos'

            if verb_index < len(labels) - 2:
                mark[verb_index + 2] = 1
                ctx_p2 = sentence[verb_index + 2]
            else:
                ctx_p2 = 'eos'

            word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]
            pred_idx = [predicate_dict.get(predicate)] * sen_len

            ctx_n2_idx = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
            ctx_n1_idx = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
            ctx_0_idx = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
            ctx_p1_idx = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
            ctx_p2_idx = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len

            label_idx = [label_dict.get(w) for w in labels]

            yield word_idx, pred_idx, ctx_n2_idx, ctx_n1_idx, \
              ctx_0_idx, ctx_p1_idx, ctx_p2_idx, mark, label_idx

    return reader()


def get_dict():
    word_dict = load_dict(
        common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5))
    verb_dict = load_dict(
        common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5))
    label_dict = load_dict(
        common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5))
    return word_dict, verb_dict, label_dict


def get_embedding():
    return common.download(EMB_URL, 'conll05st', EMB_MD5)


def test():
    word_dict, verb_dict, label_dict = get_dict()
    reader = corpus_reader(
        common.download(DATA_URL, 'conll05st', DATA_MD5),
        words_name='conll05st-release/test.wsj/words/test.wsj.words.gz',
        props_name='conll05st-release/test.wsj/props/test.wsj.props.gz')
    return reader_creator(reader, word_dict, verb_dict, label_dict)


if __name__ == '__main__':
    print get_embedding()
    for f in test():
        print f