roi_pool_op.cu 8.1 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/roi_pool_op.h"
W
wanghaox 已提交
16
#include "paddle/platform/cuda_helper.h"
W
wanghaox 已提交
17 18 19 20

namespace paddle {
namespace operators {

W
wanghaox 已提交
21 22
using Tensor = framework::Tensor;

W
wanghaox 已提交
23 24 25
static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;
static constexpr int kROISize = 5;
W
wanghaox 已提交
26

W
wanghaox 已提交
27 28 29
static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
W
wanghaox 已提交
30
}
W
wanghaox 已提交
31

W
wanghaox 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44
  template <typename T>
  __global__ void GPUROIPoolForward(
      const int nthreads, const T* input_data, const int64_t* input_rois,
      const float spatial_scale, const int channels, const int height,
      const int width, const int pooled_height, const int pooled_width,
      T* output_data, int64_t* argmax_data) {
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    int offset = blockDim.x * gridDim.x;
    for (size_t i = index; i < nthreads; i += offset) {
      int pw = index % pooled_width;
      int ph = (index / pooled_width) % pooled_height;
      int c = (index / pooled_width / pooled_height) % channels;
      int n = index / pooled_width / pooled_height / channels;
W
wanghaox 已提交
45

W
wanghaox 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
      const int64_t* offset_input_rois = input_rois + n * kROISize;
      int roi_batch_ind = offset_input_rois[0];
      int roi_start_w = round(offset_input_rois[1] * spatial_scale);
      int roi_start_h = round(offset_input_rois[2] * spatial_scale);
      int roi_end_w = round(offset_input_rois[3] * spatial_scale);
      int roi_end_h = round(offset_input_rois[4] * spatial_scale);

      int roi_width = max(roi_end_w - roi_start_w + 1, 1);
      int roi_height = max(roi_end_h - roi_start_h + 1, 1);
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

      int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
      int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
      int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
      int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

      hstart = min(max(hstart + roi_start_h, 0), height);
      hend = min(max(hend + roi_start_h, 0), height);
      wstart = min(max(wstart + roi_start_w, 0), width);
      wend = min(max(wend + roi_start_w, 0), width);
      bool is_empty = (hend <= hstart) || (wend <= wstart);

W
wanghaox 已提交
69
      T maxval = is_empty ? 0 : -std::numeric_limits<T>::max();
W
wanghaox 已提交
70 71 72 73 74 75 76 77 78
      int maxidx = -1;
      const T* offset_input_data =
          input_data + (roi_batch_ind * channels + c) * height * width;
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
          int input_data_index = h * width + w;
          if (offset_input_data[input_data_index] > maxval) {
            maxval = offset_input_data[input_data_index];
            maxidx = input_data_index;
W
wanghaox 已提交
79 80
          }
        }
W
wanghaox 已提交
81 82 83 84 85
      }
      output_data[index] = maxval;
      if (argmax_data) {
        argmax_data[index] = maxidx;
      }
W
wanghaox 已提交
86 87 88 89
    }
  }

template <typename T>
W
wanghaox 已提交
90
__global__ void GPUROIPoolBackward(
W
wanghaox 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    const int nthreads,
    const int64_t* input_rois,
    const T* output_grad,
    const int64_t* argmax_data,
    const int num_rois,
    const float spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    T* input_grad) {
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    int offset = blockDim.x * gridDim.x;
    for (int i = index; i < nthreads; i += offset) {
      int pw = index % pooled_width;
      int ph = (index / pooled_width) % pooled_height;
      int c = (index / pooled_width / pooled_height) % channels;
      int n = index / pooled_width / pooled_height / channels;

W
wanghaox 已提交
111
      const int64_t* offset_input_rois = input_rois + n * kROISize;
W
wanghaox 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
      int roi_batch_ind = offset_input_rois[0];
      int input_offset = (roi_batch_ind * channels + c) * height * width;
      int output_offset = (n * channels + c) * pooled_height * pooled_width;
      const T* offset_output_grad = output_grad + output_offset;
      T* offset_input_grad = input_grad + input_offset;
      const int64_t* offset_argmax_data = argmax_data + output_offset;

      int argmax = offset_argmax_data[ph * pooled_width + pw];
      if (argmax != -1) {
        platform::CudaAtomicAdd(offset_input_grad + argmax,
          static_cast<T>(offset_output_grad[ph * pooled_width + pw]));
      }
    }
  }


template <typename Place, typename T>
W
wanghaox 已提交
129
class GPUROIPoolOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
130 131 132
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
W
wanghaox 已提交
133
    auto* rois = ctx.Input<Tensor>("ROIs");
W
wanghaox 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146
    auto* out = ctx.Output<Tensor>("Out");
    auto* argmax = ctx.Output<Tensor>("Argmax");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    auto in_stride = framework::stride(in_dims);
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

W
wanghaox 已提交
147
    size_t rois_num = rois->dims()[0];
W
wanghaox 已提交
148 149 150
    if (rois_num== 0) return;

    int output_size = out->numel();
W
wanghaox 已提交
151 152
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;
W
wanghaox 已提交
153

W
wanghaox 已提交
154
    GPUROIPoolForward<T>
W
wanghaox 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
      <<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
      output_size,
      in->data<T>(),
      rois->data<int64_t>(),
      spatial_scale,
      channels,
      height,
      width,
      pooled_height,
      pooled_width,
      out->mutable_data<T>(ctx.GetPlace()),
      argmax->mutable_data<int64_t>(ctx.GetPlace()));
  }
};

template <typename Place, typename T>
W
wanghaox 已提交
171
class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
172 173 174
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
W
wanghaox 已提交
175
    auto* rois = ctx.Input<Tensor>("ROIs");
W
wanghaox 已提交
176 177 178 179 180 181 182 183 184 185 186
    auto* argmax = ctx.Input<Tensor>("Argmax");

    auto* out_grad =
        ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_grad =
        ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

W
wanghaox 已提交
187
    size_t rois_num = rois->dims()[0];
W
wanghaox 已提交
188 189 190 191 192 193 194 195 196 197
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

    if (x_grad) {
      x_grad->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<Place, T> set_zero;
      set_zero(ctx.device_context(), x_grad, static_cast<T>(0));

      int output_grad_size = out_grad->numel();
W
wanghaox 已提交
198 199
      int blocks = NumBlocks(output_grad_size);
      int threads = kNumCUDAThreads;
W
wanghaox 已提交
200 201

      if (output_grad_size > 0) {
W
wanghaox 已提交
202
        GPUROIPoolBackward<T>
W
wanghaox 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
          <<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
          output_grad_size,
          rois->data<int64_t>(),
          out_grad->data<T>(),
          argmax->data<int64_t>(),
          rois_num,
          spatial_scale,
          channels,
          height,
          width,
          pooled_height,
          pooled_width,
          x_grad->mutable_data<T>(ctx.GetPlace()));
        }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
    roi_pool,
W
wanghaox 已提交
227 228
    ops::GPUROIPoolOpKernel<paddle::platform::GPUPlace, float>,
    ops::GPUROIPoolOpKernel<paddle::platform::GPUPlace, double>);
W
wanghaox 已提交
229 230
REGISTER_OP_GPU_KERNEL(
    roi_pool_grad,
W
wanghaox 已提交
231 232
    ops::GPUROIPoolGradOpKernel<paddle::platform::GPUPlace, float>,
    ops::GPUROIPoolOpKernel<paddle::platform::GPUPlace, double>);