ConvShiftLayer.cpp 2.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
Y
Yu Yang 已提交
17
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * @brief A layer for circular convluation of two vectors,
 * which is used in NEURAL TURING MACHINE.
 * - Input: two vectors, the first is data (batchSize x dataDim)
 * the second is shift weights (batchSize x shiftDim)
 * - Output: a vector (batchSize x dataDim)
 * Assumed that:
 * - a[in]: contains M elements.
 * - b[in]: contains N elements (N should be odd).
 * - c[out]: contains M elements.
 *
 * \f[
 *     c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}
 * \f]
 *
 * In this formula:
 *  - a's index is computed modulo M.
 *  - b's index is comupted modulo N.
 *
 * The config file api is conv_shift_layer.
 */

class ConvShiftLayer : public Layer {
public:
  explicit ConvShiftLayer(const LayerConfig& config) : Layer(config) {}

  ~ConvShiftLayer() {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);
  void backward(const UpdateCallback& callback = nullptr);
};

REGISTER_LAYER(conv_shift, ConvShiftLayer);

bool ConvShiftLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(inputLayers_.size(), 2U);

  return true;
}

void ConvShiftLayer::forward(PassType passType) {
  Layer::forward(passType);

  MatrixPtr inV0 = getInputValue(0);
  MatrixPtr inV1 = getInputValue(1);

  size_t batchSize = inV0->getHeight();
  size_t dataDim = inV0->getWidth();

  CHECK_EQ(batchSize, inV1->getHeight());
  CHECK_EQ(dataDim, getSize());

  {
    REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
    resetOutput(batchSize, dataDim);
  }

  MatrixPtr outV = getOutputValue();

  REGISTER_TIMER_INFO("FwConvShiftTimer", getName().c_str());
  outV->circularConv(*inV0, *inV1);
}

void ConvShiftLayer::backward(const UpdateCallback& callback) {
  MatrixPtr inV0 = getInputValue(0);
  MatrixPtr inV1 = getInputValue(1);
  MatrixPtr outG = getOutputGrad();
  MatrixPtr inG0 = getInputGrad(0);
  MatrixPtr inG1 = getInputGrad(1);

  REGISTER_TIMER_INFO("BwConvShiftTimer", getName().c_str());

  if (inG0 && inG1) {
    outG->circularConvDerivative(*outG, *inV0, *inV1, *inG0, *inG1);
  } else {
    CHECK(!inG0 || !inG1) << "Not supported";
  }
}

}  // namespace paddle