concat_and_split.h 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/dense_tensor.h"

namespace pten {

/*
 * \brief Concatenate the input tensors along the dimension axis.
 *  TODO(zcd): maybe it needs to be more detailed.
 *  Examples:
 *     Input[0] = [[1,2],[3,4]]
 *     Input[1] = [[5,6]]
 *     axis = 0
 *
 *     Output = [[1,2],
 *               [3,4],
 *               [5,6]]
 */

template <typename T, typename Context>
void ConcatImpl(const Context& context,
                const std::vector<DenseTensor>& input,
                int axis,
                DenseTensor* output) {
  // TODO(zcd): Add input data validity checking
  size_t num = input.size();

  int64_t rows = 1;
  auto dim_0 = input[0].dims();
  for (int i = 0; i < axis; ++i) {
    rows *= dim_0[i];
  }
  int64_t out_rows = rows, out_cols = 0;

  std::vector<int64_t> input_cols(input.size());
  for (size_t i = 0; i < num; ++i) {
    int64_t t_cols = input[i].numel() / rows;
    out_cols += t_cols;
    input_cols[i] = t_cols;
  }
  auto cpu_place = context.GetPlace();

  // computation
  auto output_data = output->data<T>();
  int64_t col_idx = 0;
  for (size_t j = 0; j < num; ++j) {
    int64_t col_len = input_cols[j];
    auto input_data = input[j].data<T>();
    for (int64_t k = 0; k < out_rows; ++k) {
      paddle::memory::Copy(cpu_place,
                           output_data + k * out_cols + col_idx,
                           cpu_place,
                           input_data + k * col_len,
                           sizeof(T) * col_len);
    }
    col_idx += col_len;
  }
}

/*
 * \brief Split the input tensors along the dimension axis into outputs.
 *  TODO(zcd): maybe it needs to be more detailed.
 *  Examples:
 *     Input = [[1,2],
 *              [3,4],
 *              [5,6]]
 *     axis = 0
 *
 *     Output[0] = [[1,2],[3,4]]
 *     Output[1] = [[5,6]]
 */
template <typename T, typename Context>
void SplitImpl(const Context& context,
               const DenseTensor& input,
               const std::vector<const DenseTensor*>& ref_inputs,
               const int axis,
               std::vector<DenseTensor*>* outputs) {
  // NOTE(zhiqiu): split a tensor of shape [0,3,4] at axis=1, result in 3
  // tensors of shape [0,1,4]
  if (input.numel() == 0) {
    return;
  }

  // TODO(zcd): Add input data validity checking
  size_t num = outputs->size();

  int input_rows = 1;
  auto dim_0 = ref_inputs[0]->dims();
  for (int i = 0; i < axis; ++i) {
    input_rows *= dim_0[i];
  }

  int input_cols = 0;

  std::vector<int64_t> output_cols(outputs->size());
  for (size_t i = 0; i < num; ++i) {
    int t_cols = ref_inputs[i]->numel() / input_rows;
    input_cols += t_cols;
    output_cols[i] = t_cols;
  }
  auto cpu_place = context.GetPlace();

  // computation
  for (int k = 0; k < input_rows; ++k) {
    const T* src_ptr = input.data<T>() + k * input_cols;
    int col_idx = 0;
    for (size_t j = 0; j < num; ++j) {
      int col_len = output_cols[j];
      auto* out_tensor = outputs->at(j);
      if (out_tensor != nullptr) {
        T* dst_ptr = out_tensor->data<T>() + k * col_len;
        paddle::memory::Copy(cpu_place,
                             dst_ptr,
                             cpu_place,
                             src_ptr + col_idx,
                             sizeof(T) * col_len);
      }
      col_idx += col_len;
    }
  }
}

}  // namespace pten