test_conditional_block.py 3.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import numpy as np
Y
Yu Yang 已提交
18
import unittest
19
import paddle.fluid as fluid
20 21 22 23
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
24
from paddle.fluid.layers.control_flow import ConditionalBlock
Y
Yu Yang 已提交
25 26


27
class ConditionalBlockTest(unittest.TestCase):
Y
Yu Yang 已提交
28
    def test_forward(self):
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            data = layers.data(name='X', shape=[1], dtype='float32')
            data.stop_gradient = False
            cond = ConditionalBlock(inputs=[data])
            out = layers.create_tensor(dtype='float32')
            with cond.block():
                hidden = layers.fc(input=data, size=10)
                layers.assign(hidden, out)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            exe.run(startup_program)

            x = np.random.random(size=(10, 1)).astype('float32')

            outs = exe.run(main_program, feed={'X': x}, fetch_list=[out])[0]
            print(outs)
            loss = layers.mean(out)
            append_backward(loss=loss)
            outs = exe.run(
                main_program,
                feed={'X': x},
                fetch_list=[main_program.block(0).var(data.name + "@GRAD")])[0]
            print(outs)


class TestConditionalBlockOpInferShape(unittest.TestCase):
    def test_infer_shape(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            global_block = main_program.global_block()
            sub_block = main_program._create_block()
            main_program._rollback()
            step_scope = global_block.create_var(
                type=core.VarDesc.VarType.STEP_SCOPES)
            cond_var = layers.fill_constant(
                shape=[1], dtype='bool', value=False)

            op = global_block.append_op(
                type='conditional_block',
                inputs={
                    'Cond': [cond_var],
                    'Input': [],
                },
                outputs={'Out': [],
                         'Scope': [step_scope]},
                attrs={'sub_block': sub_block,
                       'is_scalar_condition': True})
            op.desc.infer_shape(global_block.desc)
Y
Yu Yang 已提交
81 82 83 84


if __name__ == '__main__':
    unittest.main()