conditional_block_op.cc 12.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/fluid/operators/controlflow/conditional_block_op.h"
16

17
#include "paddle/fluid/operators/assign_op.h"
18
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
19 20 21 22

namespace paddle {
namespace operators {

Z
Zeng Jinle 已提交
23 24 25 26 27 28
const char ConditionalOp::kInputs[] = "Input";
const char ConditionalOp::kOutputs[] = "Out";
const char ConditionalOp::kCondition[] = "Cond";
const char ConditionalOp::kScope[] = "Scope";
const char ConditionalOp::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";

Y
Yu Yang 已提交
29 30 31 32 33 34 35
class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
36 37 38 39

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
40 41
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
42 43 44
      // When is_scalar_condition is True, the conditional variable is a scalar,
      // whether need to execute the operators in sub-block depends on the
      // conditional variable (Cond).
Z
Zeng Jinle 已提交
45
      auto xs = InputTensors(scope, ConditionalOp::kCondition);
46 47
      need_run = ScalarCondition(xs);
    } else {
48 49 50
      // When is_scalar_condition is False, the conditional variable maybe a
      // vector or tensor, whether need to execute the operators in sub-block
      // depends on the input variables (Input).
Z
Zeng Jinle 已提交
51
      auto xs = InputTensors(scope, ConditionalOp::kInputs);
52 53 54 55
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
56 57

    if (need_run) {
Z
Zeng Jinle 已提交
58
      auto *scope_var = scope.FindVar(Output(ConditionalOp::kScope));
Y
Yu Yang 已提交
59 60 61 62 63
      PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();
D
dzhwinter 已提交
64
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
65
      auto *block = Attr<framework::BlockDesc *>("sub_block");
66 67
      VLOG(3) << "Conditional block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
Z
Zeng Jinle 已提交
68 69 70
      auto &skip_vars =
          Attr<std::vector<std::string>>(ConditionalOp::kSkipEagerDeletionVars);
      exec.Run(*block->Program(), &cur_scope, block->ID(), false, true,
71 72
               skip_vars, /* force_disable_gc */ false,
               /* keep_kid_scopes */ true);
Y
Yu Yang 已提交
73 74 75 76
    }
  }
};

77 78 79 80 81 82 83 84 85
class ConditionalBlockInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInputs(ConditionalOp::kCondition), true,
                      platform::errors::InvalidArgument(
                          "conditional_block_op must have condition input"));
  }
};

Y
Yu Yang 已提交
86 87 88 89 90 91 92
class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
93 94 95 96

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
97 98
    bool need_run;
    if (Attr<bool>("is_scalar_condition")) {
Z
Zeng Jinle 已提交
99
      auto xs = this->InputTensors(scope, ConditionalOp::kCondition);
100 101
      need_run = ScalarCondition(xs);
    } else {
Z
Zeng Jinle 已提交
102
      auto xs = this->InputTensors(scope, ConditionalOp::kInputs);
103 104 105 106
      need_run = std::all_of(
          xs.begin(), xs.end(),
          [](const framework::LoDTensor *t) { return t->numel() != 0; });
    }
Y
Yu Yang 已提交
107

108 109 110
    const auto &inputs = Inputs(ConditionalOp::kInputs);
    const auto &outside_grads =
        Outputs(framework::GradVarName(ConditionalOp::kInputs));
Y
Yu Yang 已提交
111
    if (need_run) {
112 113 114 115 116 117
      std::vector<std::string> inside_grads;
      inside_grads.reserve(inputs.size());
      for (auto &in : inputs) {
        inside_grads.emplace_back(framework::GradVarName(in));
      }

Z
Zeng Jinle 已提交
118
      auto *scope_var = scope.FindVar(Input(ConditionalOp::kScope));
119 120 121
      PADDLE_ENFORCE_NE(scope_var, nullptr,
                        platform::errors::InvalidArgument(
                            "Scope must be set in conditional block op"));
Y
Yu Yang 已提交
122
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
123 124 125
      PADDLE_ENFORCE_GT(scopes.size(), 0,
                        platform::errors::InvalidArgument(
                            "Scope must be set in conditional block op"));
Y
Yu Yang 已提交
126 127
      framework::Scope &cur_scope = *scopes[0];

D
dzhwinter 已提交
128
      framework::Executor exec(dev_place);
Y
Yu Yang 已提交
129
      auto *block = Attr<framework::BlockDesc *>("sub_block");
Y
Yu Yang 已提交
130

131 132
      VLOG(3) << "Conditional Grad block.idx = " << block->ID()
              << ", scope = " << &cur_scope;
133
      exec.Run(*block->Program(), &cur_scope, block->ID(), false, true,
134 135
               inside_grads, /* force_disable_gc */ false,
               /* keep_kid_scopes */ false);
Y
Yu Yang 已提交
136

137 138
      AssignLocalGradientToParentScope(dev_place, cur_scope, scope,
                                       inside_grads, outside_grads);
139
      return;
Y
Yu Yang 已提交
140
    }
141 142

    AssignZeroToParentScope(dev_place, scope, inputs, outside_grads);
Y
Yu Yang 已提交
143 144 145
  }

 private:
146
  void AssignLocalGradientToParentScope(
D
dzhwinter 已提交
147
      const platform::Place &place, const framework::Scope &cur_scope,
148 149 150 151 152 153 154 155 156 157 158
      const framework::Scope &parent_scope,
      const std::vector<std::string> &inside_grads,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &inside_grad_name = inside_grads[i];
      VLOG(4) << "inside_grad_name = " << inside_grad_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *inside_var =
          cur_scope.FindLocalVar(inside_grad_name);
      if (inside_var == nullptr) {
Y
Yu Yang 已提交
159 160
        continue;
      }
161 162 163 164 165 166 167 168 169
      framework::Variable *outside_var =
          parent_scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }
      platform::DeviceContext *dev_ctx =
          platform::DeviceContextPool::Instance().Get(place);
      framework::VisitVarType(*inside_var,
                              AssignFunctor(outside_var, *dev_ctx));
Y
Yu Yang 已提交
170 171
    }
  }
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

  void AssignZeroToParentScope(
      const platform::Place &place, const framework::Scope &scope,
      const std::vector<std::string> &inputs,
      const std::vector<std::string> &outside_grads) const {
    for (size_t i = 0; i < outside_grads.size(); ++i) {
      const std::string &outside_grad_name = outside_grads[i];
      const std::string &input_name = inputs[i];
      VLOG(4) << "input_name = " << input_name
              << ", outside_grad_name = " << outside_grad_name;
      framework::Variable *input_var = scope.FindVar(input_name);
      if (input_var == nullptr) {
        continue;
      }
      framework::Variable *outside_var = scope.FindVar(outside_grad_name);
      if (outside_var == nullptr) {
        continue;
      }

      if (input_var->IsType<framework::LoDTensor>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensor>(), true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensor, which "
                              "doesn't match input_var %s",
                              outside_grad_name, input_name));
        AssignZeroToOutsideTensor(
            place, scope, input_var->Get<framework::LoDTensor>(),
            outside_var->GetMutable<framework::LoDTensor>());
      } else if (input_var->IsType<framework::LoDTensorArray>()) {
        PADDLE_ENFORCE_EQ(outside_var->IsType<framework::LoDTensorArray>(),
                          true,
                          platform::errors::InvalidArgument(
                              "Type of outside_var %s is NOT LoDTensorArray, "
                              "which doesn't match input_var %s",
                              outside_grad_name, input_name));
        const auto &input_tensors = input_var->Get<framework::LoDTensorArray>();
        auto *outside_tensors =
            outside_var->GetMutable<framework::LoDTensorArray>();
        PADDLE_ENFORCE_EQ(input_tensors.size(), outside_tensors->size(),
                          platform::errors::InvalidArgument(
                              "LoDTensorArray outside_var %s doen't have same "
                              "size as input_var %s",
                              outside_grad_name, input_name));
        for (size_t j = 0; j < input_tensors.size(); ++j) {
          AssignZeroToOutsideTensor(place, scope, input_tensors[j],
                                    &((*outside_tensors)[j]));
        }
      } else {
        // TODO(huihuangzheng): add support for SelectedRows
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Conditional block grad op doesn't support non-LoDTensor output "
            "now"));
      }
    }
  }

  void AssignZeroToOutsideTensor(const platform::Place &place,
                                 const framework::Scope &cur_scope,
                                 const framework::LoDTensor &input_tensor,
                                 framework::LoDTensor *outside_tensor) const {
    if (!input_tensor.IsInitialized() || input_tensor.numel() == 0) {
      return;
    }
    VLOG(4) << "Assigning zero to " << outside_tensor;
    outside_tensor->Resize(input_tensor.dims());
    outside_tensor->mutable_data(place, input_tensor.type());
    const platform::DeviceContext *dev_ctx =
        platform::DeviceContextPool::Instance().Get(place);
    math::set_constant(*dev_ctx, outside_tensor, 0.0f);
    outside_tensor->set_lod(input_tensor.lod());
  }
Y
Yu Yang 已提交
243 244 245 246 247
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
Z
Zeng Jinle 已提交
248
    PADDLE_ENFORCE(context->HasInputs(ConditionalOp::kCondition));
249 250
    if (context->HasInputs(ConditionalOp::kInputs) &&
        context->HasOutputs(framework::GradVarName(ConditionalOp::kInputs))) {
Z
Zeng Jinle 已提交
251 252
      context->SetOutputsDim(framework::GradVarName(ConditionalOp::kInputs),
                             context->GetInputsDim(ConditionalOp::kInputs));
Y
Yu Yang 已提交
253 254 255 256
    }
  }
};

H
hong 已提交
257 258
template <typename T>
class ConditionalBlockGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
259
 public:
H
hong 已提交
260
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
261 262

 protected:
H
hong 已提交
263 264
  std::unique_ptr<T> Apply() const override {
    auto grad_op = new T();
Y
Yu Yang 已提交
265
    grad_op->SetType("conditional_block_grad");
Z
Zeng Jinle 已提交
266
    grad_op->SetInput(ConditionalOp::kCondition,
H
hong 已提交
267 268 269 270 271
                      this->Input(ConditionalOp::kCondition));
    grad_op->SetInput(ConditionalOp::kInputs,
                      this->Input(ConditionalOp::kInputs));
    grad_op->SetInput(ConditionalOp::kOutputs,
                      this->Output(ConditionalOp::kOutputs));
Z
Zeng Jinle 已提交
272
    grad_op->SetInput(framework::GradVarName(ConditionalOp::kOutputs),
H
hong 已提交
273 274 275
                      this->OutputGrad(ConditionalOp::kOutputs));
    grad_op->SetInput(ConditionalOp::kScope,
                      this->Output(ConditionalOp::kScope));
Z
Zeng Jinle 已提交
276
    grad_op->SetOutput(framework::GradVarName(ConditionalOp::kInputs),
H
hong 已提交
277
                       this->InputGrad(ConditionalOp::kInputs, false));
A
Abhinav Arora 已提交
278
    grad_op->SetBlockAttr("sub_block", this->grad_block_[0]);
H
hong 已提交
279 280 281
    grad_op->SetAttr("is_scalar_condition",
                     this->GetAttr("is_scalar_condition"));
    return std::unique_ptr<T>(grad_op);
Y
Yu Yang 已提交
282 283 284 285 286 287 288 289
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
290
                  ops::ConditionalBlockInferShape,
Y
Yu Yang 已提交
291
                  ops::ConditionalBlockOpProtoMaker,
H
hong 已提交
292
                  ops::ConditionalBlockGradMaker<paddle::framework::OpDesc>);
Y
Yu Yang 已提交
293 294
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
                  ops::ConditionalBlockGradInferShape);