conv_transpose_cudnn_op.cu.cc 12.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_transpose_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
Z
zchen0211 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

31
static constexpr size_t kConvCUDNNWorkspaceLimitBytes = 1024 * 1024 * 1024;
Z
zchen0211 已提交
32 33

template <typename T>
34
class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
35 36 37
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
38
                   "It must use CUDAPlace.");
Z
zchen0211 已提交
39 40 41 42 43 44
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
45
    // cudnn v5 does not support dilations
Z
zchen0211 已提交
46
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
47
    int groups = ctx.Attr<int>("groups");
Z
zchen0211 已提交
48 49 50 51 52 53 54 55 56 57
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
C
chengduoZH 已提交
58 59 60 61 62 63 64
    DataLayout layout;

    if (strides.size() == 2U) {
      layout = DataLayout::kNCHW;
    } else {
      layout = DataLayout::kNCDHW;
    }
Z
zchen0211 已提交
65

C
chengduoZH 已提交
66
    // (N, M, H, W) or (N, M, D, H, W)
Z
zchen0211 已提交
67
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
68
        layout, framework::vectorize2int(input->dims()), groups);
C
chengduoZH 已提交
69
    // (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
Z
zchen0211 已提交
70
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
71
        layout, framework::vectorize2int(output->dims()), groups);
C
chengduoZH 已提交
72
    // (M, C, K_h, K_w) or (M, C, K_d, K_h, K_w)
Z
zchen0211 已提交
73
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
74
        layout, framework::vectorize2int(filter->dims()), groups);
Z
zchen0211 已提交
75 76 77 78 79 80
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

    // ------------------- cudnn conv workspace ---------------------
    void* cudnn_workspace = nullptr;
    size_t workspace_size_in_bytes;  // final workspace to allocate.
81
    size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes;
Z
zchen0211 已提交
82 83 84 85
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
Z
zchen0211 已提交
86
    cudnnConvolutionBwdDataAlgo_t algo;
Q
QI JUN 已提交
87 88
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
Z
zchen0211 已提交
89
    // Get the algorithm
W
Wu Yi 已提交
90
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
Z
zchen0211 已提交
91 92 93 94 95 96 97
        handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
        // dxDesc: Handle to the previously initialized output tensor
        // descriptor.
        cudnn_output_desc, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));

    // get workspace size able to allocate
W
Wu Yi 已提交
98
    CUDNN_ENFORCE(
Z
zchen0211 已提交
99 100
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
            handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
Z
zchen0211 已提交
101
            cudnn_output_desc, algo, &workspace_size_in_bytes));
Z
zchen0211 已提交
102 103

    // Allocate on GPU memory
D
dzhwinter 已提交
104
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
Z
zchen0211 已提交
105 106 107
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);

    // ------------------- cudnn conv transpose forward ---------------------
108 109 110
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_offset = output->numel() / output->dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
Z
zchen0211 已提交
111
    T alpha = 1.0f, beta = 0.0f;
112
    for (int g = 0; g < groups; g++) {
W
Wu Yi 已提交
113
      CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
114 115 116 117 118
          handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g,
          cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc,
          algo, cudnn_workspace, workspace_size_in_bytes, &beta,
          cudnn_output_desc, output_data + output_offset * g));
    }
Z
zchen0211 已提交
119 120 121 122 123 124 125

    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

template <typename T>
126
class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
127 128 129
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
130
                   "It must use CUDAPlace.");
Z
zchen0211 已提交
131 132 133 134 135 136 137 138 139 140 141
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
142
    // cudnn v5 does not support dilations
Z
zchen0211 已提交
143
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
144
    int groups = ctx.Attr<int>("groups");
Z
zchen0211 已提交
145 146 147 148
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
Z
zchen0211 已提交
149
    ScopedTensorDescriptor output_desc;
Z
zchen0211 已提交
150 151 152 153
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;

C
chengduoZH 已提交
154
    // Input: (N, M, H, W) or (N, M, D, H, W)
Z
zchen0211 已提交
155
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
156
        layout, framework::vectorize2int(input->dims()), groups);
C
chengduoZH 已提交
157
    // Output: (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
Z
zchen0211 已提交
158
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
159
        layout, framework::vectorize2int(output_grad->dims()), groups);
C
chengduoZH 已提交
160
    // Filter (M, C, K_h, K_w) or (M, C, K_d K_h, K_w)
Z
zchen0211 已提交
161
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
162
        layout, framework::vectorize2int(filter->dims()), groups);
Z
zchen0211 已提交
163 164 165 166 167

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

    // ------------------- cudnn backward algorithm ---------------------
Z
zchen0211 已提交
168
    cudnnConvolutionFwdAlgo_t data_algo;
Z
zchen0211 已提交
169
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
Z
zchen0211 已提交
170 171
    size_t bwd_filter_ws_size, fwd_ws_size;
    size_t workspace_size_in_bytes = 0;
172
    size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes;
Z
zchen0211 已提交
173 174 175 176
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
177 178
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
Z
zchen0211 已提交
179
    if (input_grad) {
Z
zchen0211 已提交
180
      // choose backward algorithm for data
W
Wu Yi 已提交
181
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
Z
zchen0211 已提交
182 183 184
          handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_input_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &data_algo));
W
Wu Yi 已提交
185
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
Z
zchen0211 已提交
186 187 188
          handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_input_desc, data_algo, &fwd_ws_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, fwd_ws_size);
Z
zchen0211 已提交
189 190 191
    }

    if (filter_grad) {
Z
zchen0211 已提交
192
      // choose backward algorithm for filter
W
Wu Yi 已提交
193
      CUDNN_ENFORCE(
Z
zchen0211 已提交
194
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
Z
zchen0211 已提交
195
              handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
Z
zchen0211 已提交
196 197 198 199
              cudnn_filter_desc,
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &filter_algo));

Z
zchen0211 已提交
200
      // get workspace for backwards filter algorithm
W
Wu Yi 已提交
201
      CUDNN_ENFORCE(
Z
zchen0211 已提交
202
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
Z
zchen0211 已提交
203 204 205 206
              handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &bwd_filter_ws_size));
      workspace_size_in_bytes =
          std::max(workspace_size_in_bytes, bwd_filter_ws_size);
Z
zchen0211 已提交
207
    }
Z
zchen0211 已提交
208

Z
zchen0211 已提交
209 210 211
    // ------------------- cudnn conv workspace ---------------------
    // Already on GPU
    void* cudnn_workspace = nullptr;
D
dzhwinter 已提交
212
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
Z
zchen0211 已提交
213 214 215
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv backward data ---------------------
    // FIXME(typhoonzero): template type T may not be the same as cudnn call.
216 217 218 219
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_grad_offset =
        output_grad->numel() / output_grad->dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
Z
zchen0211 已提交
220 221 222
    T alpha = 1.0f, beta = 0.0f;
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
223
      // Because beta is zero, it is unnecessary to reset input_grad.
224
      for (int g = 0; g < groups; g++) {
W
Wu Yi 已提交
225
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
226 227 228 229 230 231
            handle, &alpha, cudnn_output_desc,
            output_grad_data + output_grad_offset * g, cudnn_filter_desc,
            filter_data + filter_offset * g, cudnn_conv_desc, data_algo,
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
            input_grad_data + input_offset * g));
      }
Z
zchen0211 已提交
232
    }
Z
zchen0211 已提交
233

Z
zchen0211 已提交
234 235 236
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
237
      // Because beta is zero, it is unnecessary to reset filter_grad.
Z
zchen0211 已提交
238
      // Gradient with respect to the filter
239
      for (int g = 0; g < groups; g++) {
W
Wu Yi 已提交
240
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
241 242 243 244 245 246
            handle, &alpha, cudnn_output_desc,
            output_grad_data + output_grad_offset * g, cudnn_input_desc,
            input_data + input_offset * g, cudnn_conv_desc, filter_algo,
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_filter_desc,
            filter_grad_data + filter_offset * g));
      }
Z
zchen0211 已提交
247
    }
248

Z
zchen0211 已提交
249 250 251 252 253 254 255 256 257 258
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

259 260 261 262 263 264 265 266 267 268 269 270 271
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);