test_layers.py 9.5 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

Q
Qiao Longfei 已提交
18 19
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
Y
Yu Yang 已提交
20
from paddle.v2.fluid.framework import Program, program_guard
Q
Qiao Longfei 已提交
21
from paddle.v2.fluid.param_attr import ParamAttr
Y
Yu Yang 已提交
22 23 24 25


class TestBook(unittest.TestCase):
    def test_fit_a_line(self):
26
        program = Program()
Y
Yu Yang 已提交
27 28 29 30 31 32 33 34
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)
            program.append_backward(avg_cost)
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
        print(str(program))
Y
Yu Yang 已提交
37 38

    def test_recognize_digits_mlp(self):
39
        program = Program()
Y
Yu Yang 已提交
40 41 42 43 44 45
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
46 47 48 49
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
50 51 52 53 54
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
55 56

    def test_simple_conv2d(self):
F
fengjiayi 已提交
57
        program = Program()
Y
Yu Yang 已提交
58 59 60 61 62
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32')
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
Y
Yu Yang 已提交
63

64 65
    def test_conv2d_transpose(self):
        program = Program()
Y
Yu Yang 已提交
66 67 68 69
        with program_guard(program):
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
        print(str(program))
70

F
fengjiayi 已提交
71
    def test_recognize_digits_conv(self):
F
fengjiayi 已提交
72
        program = Program()
Y
Yu Yang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)

            program.append_backward(avg_cost)

        print(str(program))
99

Q
QI JUN 已提交
100 101
    def test_word_embedding(self):
        program = Program()
Y
Yu Yang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
Q
Qiao Longfei 已提交
146 147 148

    def test_linear_chain_crf(self):
        program = Program()
Y
Yu Yang 已提交
149
        with program_guard(program, startup_program=Program()):
Q
Qiao Longfei 已提交
150
            label_dict_len = 10
Y
Yu Yang 已提交
151 152 153
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
Q
Qiao Longfei 已提交
154 155 156 157
            crf = layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Q
Qiao Longfei 已提交
158 159 160 161 162
            layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
163
            self.assertNotEqual(crf, None)
Q
Qiao Longfei 已提交
164
            self.assertNotEqual(crf_decode, None)
Y
Yu Yang 已提交
165 166

        print(str(program))
Q
QI JUN 已提交
167

168 169 170 171 172 173 174 175 176 177
    def test_sigmoid_cross_entropy(self):
        program = Program()
        with program_guard(program):
            dat = layers.data(name='data', shape=[10], dtype='float32')
            lbl = layers.data(name='label', shape=[10], dtype='float32')
            self.assertIsNotNone(
                layers.sigmoid_cross_entropy_with_logits(
                    x=dat, label=lbl))
        print(str(program))

Y
yangyaming 已提交
178
    def test_sequence_expand(self):
Y
yangyaming 已提交
179 180 181 182 183
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=1)
Y
yangyaming 已提交
184
            self.assertIsNotNone(layers.sequence_expand(x=x, y=y))
Y
yangyaming 已提交
185 186
        print(str(program))

Y
yangyaming 已提交
187 188 189 190 191 192 193
    def test_lstm_unit(self):
        program = Program()
        with program_guard(program):
            x_t_data = layers.data(
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
            prev_hidden_data = layers.data(
Y
yangyaming 已提交
194 195
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
196 197 198 199 200 201 202 203
            prev_cell_data = layers.data(
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
            self.assertIsNotNone(
                layers.lstm_unit(
                    x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
        print(str(program))

Y
yangyaming 已提交
204 205 206 207 208 209 210 211 212
    def test_sequence_softmax(self):
        program = Program()
        with program_guard(program):
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
            self.assertIsNotNone(layers.sequence_softmax(x=seq))
        print(str(program))

Q
qijun 已提交
213 214 215
    def test_get_places(self):
        program = Program()
        with program_guard(program):
Q
qijun 已提交
216
            x = layers.get_places(device_count=4)
Y
Yang Yu 已提交
217
            self.assertIsNotNone(x)
Q
qijun 已提交
218 219
        print(str(program))

220 221 222 223 224 225 226 227
    def test_sequence_reshape(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            self.assertIsNotNone(out)
        print(str(program))

W
wanghaoshuang 已提交
228 229 230 231 232 233 234 235 236 237
    def test_im2sequence(self):
        print("test_im2sequence")
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            output = layers.im2sequence(
                input=x, stride=[1, 1], filter_size=[2, 2])
            self.assertIsNotNone(output)
        print(str(program))

Y
Yu Yang 已提交
238 239 240

if __name__ == '__main__':
    unittest.main()