conll05.py 9.5 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dangqingqing 已提交
14
"""
Q
qijun 已提交
15
Conll05 dataset.
Q
qijun 已提交
16 17 18 19 20
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.
D
dangqingqing 已提交
21 22
"""

23 24
from __future__ import print_function

Q
qijun 已提交
25 26 27
import tarfile
import gzip
import itertools
28
import paddle.dataset.common
M
minqiyang 已提交
29
import paddle.compat as cpt
30
import paddle.utils.deprecated as deprecated
M
minqiyang 已提交
31
from six.moves import zip, range
Q
qijun 已提交
32

M
minqiyang 已提交
33
DATA_URL = 'http://paddlemodels.bj.bcebos.com/conll05st/conll05st-tests.tar.gz'
D
dangqingqing 已提交
34
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
T
typhoonzero 已提交
35
WORDDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FwordDict.txt'
D
dangqingqing 已提交
36
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
T
typhoonzero 已提交
37
VERBDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FverbDict.txt'
D
dangqingqing 已提交
38
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
T
typhoonzero 已提交
39
TRGDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FtargetDict.txt'
D
dangqingqing 已提交
40
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
T
typhoonzero 已提交
41
EMB_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2Femb'
D
dangqingqing 已提交
42 43 44 45 46
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'

UNK_IDX = 0


J
jiaozhenyu 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
def load_label_dict(filename):
    d = dict()
    tag_dict = set()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            line = line.strip()
            if line.startswith("B-"):
                tag_dict.add(line[2:])
            elif line.startswith("I-"):
                tag_dict.add(line[2:])
        index = 0
        for tag in tag_dict:
            d["B-" + tag] = index
            index += 1
            d["I-" + tag] = index
            index += 1
        d["O"] = index
    return d


D
dangqingqing 已提交
67 68 69 70 71 72 73 74 75 76
def load_dict(filename):
    d = dict()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            d[line.strip()] = i
    return d


def corpus_reader(data_path, words_name, props_name):
    """
77
    Read one corpus. It returns an iterator. Each element of
D
dangqingqing 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    this iterator is a tuple including sentence and labels. The sentence is
    consist of a list of word IDs. The labels include a list of label IDs.
    :return: a iterator of data.
    :rtype: iterator
    """

    def reader():
        tf = tarfile.open(data_path)
        wf = tf.extractfile(words_name)
        pf = tf.extractfile(props_name)
        with gzip.GzipFile(fileobj=wf) as words_file, gzip.GzipFile(
                fileobj=pf) as props_file:
            sentences = []
            labels = []
            one_seg = []
93
            for word, label in zip(words_file, props_file):
M
minqiyang 已提交
94 95
                word = cpt.to_text(word.strip())
                label = cpt.to_text(label.strip().split())
D
dangqingqing 已提交
96 97

                if len(label) == 0:  # end of sentence
98
                    for i in range(len(one_seg[0])):
D
dangqingqing 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
                        a_kind_lable = [x[i] for x in one_seg]
                        labels.append(a_kind_lable)

                    if len(labels) >= 1:
                        verb_list = []
                        for x in labels[0]:
                            if x != '-':
                                verb_list.append(x)

                        for i, lbl in enumerate(labels[1:]):
                            cur_tag = 'O'
                            is_in_bracket = False
                            lbl_seq = []
                            verb_word = ''
                            for l in lbl:
                                if l == '*' and is_in_bracket == False:
                                    lbl_seq.append('O')
                                elif l == '*' and is_in_bracket == True:
                                    lbl_seq.append('I-' + cur_tag)
                                elif l == '*)':
                                    lbl_seq.append('I-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') != -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') == -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = True
                                else:
130 131
                                    raise RuntimeError('Unexpected label: %s' %
                                                       l)
D
dangqingqing 已提交
132 133 134 135 136 137 138 139 140 141

                            yield sentences, verb_list[i], lbl_seq

                    sentences = []
                    labels = []
                    one_seg = []
                else:
                    sentences.append(word)
                    one_seg.append(label)

142 143 144 145
        pf.close()
        wf.close()
        tf.close()

D
dangqingqing 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    return reader


def reader_creator(corpus_reader,
                   word_dict=None,
                   predicate_dict=None,
                   label_dict=None):
    def reader():
        for sentence, predicate, labels in corpus_reader():

            sen_len = len(sentence)

            verb_index = labels.index('B-V')
            mark = [0] * len(labels)
            if verb_index > 0:
                mark[verb_index - 1] = 1
                ctx_n1 = sentence[verb_index - 1]
            else:
                ctx_n1 = 'bos'

            if verb_index > 1:
                mark[verb_index - 2] = 1
                ctx_n2 = sentence[verb_index - 2]
            else:
                ctx_n2 = 'bos'

            mark[verb_index] = 1
            ctx_0 = sentence[verb_index]

            if verb_index < len(labels) - 1:
                mark[verb_index + 1] = 1
                ctx_p1 = sentence[verb_index + 1]
            else:
                ctx_p1 = 'eos'

            if verb_index < len(labels) - 2:
                mark[verb_index + 2] = 1
                ctx_p2 = sentence[verb_index + 2]
            else:
                ctx_p2 = 'eos'

            word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]

            ctx_n2_idx = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
            ctx_n1_idx = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
            ctx_0_idx = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
            ctx_p1_idx = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
            ctx_p2_idx = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len

D
dangqingqing 已提交
195
            pred_idx = [predicate_dict.get(predicate)] * sen_len
D
dangqingqing 已提交
196 197
            label_idx = [label_dict.get(w) for w in labels]

D
dangqingqing 已提交
198 199
            yield word_idx, ctx_n2_idx, ctx_n1_idx, \
              ctx_0_idx, ctx_p1_idx, ctx_p2_idx, pred_idx, mark, label_idx
D
dangqingqing 已提交
200

D
update  
dangqingqing 已提交
201
    return reader
D
dangqingqing 已提交
202 203


204 205 206 207
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Conll05st",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
D
dangqingqing 已提交
208
def get_dict():
Q
qijun 已提交
209 210 211
    """
    Get the word, verb and label dictionary of Wikipedia corpus.
    """
R
root 已提交
212
    word_dict = load_dict(
213
        paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5))
R
root 已提交
214
    verb_dict = load_dict(
215
        paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5))
J
jiaozhenyu 已提交
216
    label_dict = load_label_dict(
217
        paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5))
D
dangqingqing 已提交
218 219 220
    return word_dict, verb_dict, label_dict


221 222 223 224
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Conll05st",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
D
dangqingqing 已提交
225
def get_embedding():
Q
qijun 已提交
226 227 228
    """
    Get the trained word vector based on Wikipedia corpus.
    """
229
    return paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
D
dangqingqing 已提交
230 231


232 233 234 235
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Conll05st",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
D
dangqingqing 已提交
236
def test():
Q
qijun 已提交
237 238 239
    """
    Conll05 test set creator.

Q
qijun 已提交
240
    Because the training dataset is not free, the test dataset is used for
Q
qijun 已提交
241 242 243
    training. It returns a reader creator, each sample in the reader is nine
    features, including sentence sequence, predicate, predicate context,
    predicate context flag and tagged sequence.
Q
qijun 已提交
244

Q
qijun 已提交
245
    :return: Training reader creator
Q
qijun 已提交
246 247
    :rtype: callable
    """
D
dangqingqing 已提交
248 249
    word_dict, verb_dict, label_dict = get_dict()
    reader = corpus_reader(
250
        paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5),
D
dangqingqing 已提交
251 252 253
        words_name='conll05st-release/test.wsj/words/test.wsj.words.gz',
        props_name='conll05st-release/test.wsj/props/test.wsj.props.gz')
    return reader_creator(reader, word_dict, verb_dict, label_dict)
Y
Yancey1989 已提交
254 255


256 257 258 259
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Conll05st",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
260
def fetch():
261 262 263 264 265
    paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5)
    paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5)
    paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5)
    paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
    paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5)