test_prelu_op.py 5.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17 18
import unittest
import numpy as np
19
import paddle.fluid as fluid
M
minqiyang 已提交
20
import six
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
23
from op_test import OpTest, skip_check_grad_ci
Z
zchen0211 已提交
24 25


26
class TestPReluOpError(unittest.TestCase):
27
    def test_errors(self):
28 29 30 31 32 33 34 35 36 37
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.prelu, 0.1, 'all')
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.prelu, x_int32, 'all')
            # support the input dtype is float32
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float32')
            fluid.layers.prelu(x_fp16, 'all')
38 39


Z
zchen0211 已提交
40
class PReluTest(OpTest):
Z
zchen0211 已提交
41
    def setUp(self):
42 43
        self.init_input_shape()
        self.init_attr()
Z
zchen0211 已提交
44
        self.op_type = "prelu"
J
jerrywgz 已提交
45

46
        x_np = np.random.uniform(-1, 1, self.x_shape)
J
jerrywgz 已提交
47 48 49 50 51
        # Since zero point in prelu is not differentiable, avoid randomize
        # zero.
        x_np[np.abs(x_np) < 0.005] = 0.02

        if self.attrs == {'mode': "all"}:
52
            alpha_np = np.random.uniform(-1, -0.5, (1))
J
jerrywgz 已提交
53
        elif self.attrs == {'mode': "channel"}:
54
            alpha_np = np.random.uniform(-1, -0.5, [1, self.x_shape[1]])
J
jerrywgz 已提交
55
        else:
56 57
            alpha_np = np.random.uniform(-1, -0.5, [1] + self.x_shape[1:])

58
        self.inputs = {'X': x_np, 'Alpha': alpha_np}
J
jerrywgz 已提交
59

60 61 62 63 64 65
        # NOTE(zhiqu): reshape inputs['Alpha'] from [1, 100] to [1, 100, 1, 1] since np operands could not be broadcast together with shapes (2,100,3,4) (1,100) 
        if self.attrs == {'mode': "channel"}:
            self.inputs['Alpha'] = np.reshape(
                self.inputs['Alpha'],
                [1, self.x_shape[1]] + [1] * len(self.x_shape[2:]))

Z
zchen0211 已提交
66
        out_np = np.maximum(self.inputs['X'], 0.)
Z
zchen0211 已提交
67 68
        out_np = out_np + np.minimum(self.inputs['X'],
                                     0.) * self.inputs['Alpha']
Z
zchen0211 已提交
69 70
        assert out_np is not self.inputs['X']
        self.outputs = {'Out': out_np}
Z
zchen0211 已提交
71

72
    def init_input_shape(self):
73
        self.x_shape = [2, 100, 3, 4]
74 75

    def init_attr(self):
J
jerrywgz 已提交
76 77
        self.attrs = {'mode': "channel"}

78
    def test_check_output(self):
Z
zchen0211 已提交
79 80
        self.check_output()

81
    def test_check_grad(self):
82
        self.check_grad(['X', 'Alpha'], 'Out')
J
jerrywgz 已提交
83 84


85 86 87 88 89
@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAll(PReluTest):
    def init_input_shape(self):
90
        self.x_shape = [2, 3, 4, 5]
M
minqiyang 已提交
91

92 93
    def init_attr(self):
        self.attrs = {'mode': "all"}
M
minqiyang 已提交
94

Z
zchen0211 已提交
95

96 97
class TestModeElt(PReluTest):
    def init_input_shape(self):
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        self.x_shape = [3, 2, 5, 10]

    def init_attr(self):
        self.attrs = {'mode': "element"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
        self.attrs = {'mode': "all"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 2, 3, 4, 5, 6]

    def init_attr(self):
        self.attrs = {'mode': "all"}


class TestModeChannelRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
        self.attrs = {'mode': "channel"}


class TestModeChannelRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 100, 2, 2, 2, 2]

    def init_attr(self):
        self.attrs = {'mode': "channel"}


class TestModeElementRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 10, 10]

    def init_attr(self):
        self.attrs = {'mode': "element"}


class TestModeElementRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 2, 2, 4, 5, 2]
Z
zchen0211 已提交
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    def init_attr(self):
        self.attrs = {'mode': "element"}


def prelu_t(x, mode, param_attr=None, name=None):
    helper = fluid.layer_helper.LayerHelper('prelu', **locals())
    alpha_shape = [1, x.shape[1], 1, 1]
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=helper.param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=fluid.initializer.ConstantInitializer(0.25))
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


# error message test if mode is not one of 'all', 'channel', 'element'
class TestModeError(unittest.TestCase):
    def test_mode_error(self):
        main_program = Program()
        with fluid.program_guard(main_program, Program()):
            x = fluid.data(name='x', shape=[2, 3, 4, 5])
            try:
                y = prelu_t(x, 'any')
            except Exception as e:
                assert (e.args[0].find('InvalidArgumentError') != -1)
188 189


Z
zchen0211 已提交
190 191
if __name__ == "__main__":
    unittest.main()