mixed_vector.h 8.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <initializer_list>
#include <vector>

Y
Yu Yang 已提交
20 21 22 23
#include "paddle/framework/tensor.h"
#include "paddle/framework/tensor_util.h"

#include "glog/logging.h"
D
dzhwinter 已提交
24 25 26 27 28

namespace paddle {
namespace framework {

template <typename T>
Y
Yu Yang 已提交
29
class Vector {
D
dzhwinter 已提交
30
 public:
Y
Yu Yang 已提交
31 32
  using value_type = T;

Y
Fix CI  
Yu Yang 已提交
33
  Vector() { InitEmpty(); }
Y
Yu Yang 已提交
34 35

  explicit Vector(size_t count, const T& value = T()) {
Y
Fix CI  
Yu Yang 已提交
36 37 38 39 40 41 42 43
    if (count == 0) {
      InitEmpty();
    } else {
      resize(count);
      T* ptr = begin();
      for (size_t i = 0; i < count; ++i) {
        ptr[i] = value;
      }
Y
Yu Yang 已提交
44 45 46 47
    }
  }

  Vector(std::initializer_list<T> init) {
Y
Fix CI  
Yu Yang 已提交
48 49 50 51 52
    if (init.size() == 0) {
      InitEmpty();
    } else {
      InitByIter(init.size(), init.begin(), init.end());
    }
Y
Yu Yang 已提交
53 54 55 56
  }

  template <typename U>
  Vector(const std::vector<U>& dat) {  // NOLINT
Y
Fix CI  
Yu Yang 已提交
57 58 59 60 61
    if (dat.size() == 0) {
      InitEmpty();
    } else {
      InitByIter(dat.size(), dat.begin(), dat.end());
    }
Y
Yu Yang 已提交
62 63 64 65 66 67 68 69
  }

  Vector(const Vector<T>& other) { this->operator=(other); }

  Vector<T>& operator=(const Vector<T>& other) {
    if (other.size() != 0) {
      this->InitByIter(other.size(), other.begin(), other.end());
    } else {
Y
Fix CI  
Yu Yang 已提交
70
      InitEmpty();
Y
Yu Yang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84
    }
    return *this;
  }

  Vector(Vector<T>&& other) {
    this->size_ = other.size_;
    this->flag_ = other.flag_;
    if (other.cuda_vec_.capacity()) {
      this->cuda_vec_.ShareDataWith(other.cuda_vec_);
    }
    if (other.cpu_vec_.capacity()) {
      this->cpu_vec_.ShareDataWith(other.cpu_vec_);
    }
  }
D
dzhwinter 已提交
85

Y
Yu Yang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  T& operator[](size_t i) {
    MutableCPU();
    return const_cast<T*>(cpu_vec_.data<T>())[i];
  }

  const T& operator[](size_t i) const {
    ImmutableCPU();
    return cpu_vec_.data<T>()[i];
  }

  size_t size() const { return size_; }

  T* begin() { return &this->operator[](0); }

  T* end() { return &this->operator[](size()); }

  T& front() { return *begin(); }

  T& back() {
    auto it = end();
    --it;
    return *it;
  }

  const T* begin() const { return &this->operator[](0); }
  const T* end() const { return &this->operator[](size()); }
D
dzhwinter 已提交
112

Y
Yu Yang 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126
  const T& back() const {
    auto it = end();
    --it;
    return *it;
  }

  const T& front() const { return *begin(); }

  template <typename Iter>
  void assign(Iter begin, Iter end) {
    InitByIter(end - begin, begin, end);
  }

  T* data() { return begin(); }
D
dzhwinter 已提交
127

Y
Yu Yang 已提交
128
  const T* data() const { return begin(); }
D
dzhwinter 已提交
129

Y
Yu Yang 已提交
130 131 132 133 134 135 136
  void push_back(T elem) {
    if (size_ + 1 > capacity()) {
      reserve((size_ + 1) << 1);
    }
    *end() = elem;
    ++size_;
  }
D
dzhwinter 已提交
137

Y
Yu Yang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  void resize(size_t size) {
    if (size + 1 < capacity()) {
      size_ = size;
    } else {
      MutableCPU();
      Tensor cpu_tensor;
      platform::Place cpu = platform::CPUPlace();
      T* ptr = cpu_tensor.mutable_data<T>(
          framework::make_ddim({static_cast<int64_t>(size)}), cpu);
      const T* old_ptr =
          cpu_vec_.capacity() == 0 ? nullptr : cpu_vec_.data<T>();
      if (old_ptr != nullptr) {
        std::copy(old_ptr, old_ptr + size_, ptr);
      }
      size_ = size;
      cpu_vec_.ShareDataWith(cpu_tensor);
    }
D
dzhwinter 已提交
155 156
  }

Y
Yu Yang 已提交
157 158 159 160 161 162
  const T* CUDAData(platform::Place place) const {
    PADDLE_ENFORCE(platform::is_gpu_place(place),
                   "CUDA Data must on CUDA place");
    ImmutableCUDA(place);
    return cuda_vec_.data<T>();
  }
D
dzhwinter 已提交
163

Y
Yu Yang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  T* CUDAMutableData(platform::Place place) {
    const T* ptr = CUDAData(place);
    flag_ = kDirty | kDataInCUDA;
    return const_cast<T*>(ptr);
  }

  template <typename It>
  void Extend(It begin, It end) {
    size_t pre_size = size_;
    resize(pre_size + (end - begin));
    T* ptr = this->begin() + pre_size;
    for (; begin < end; ++begin, ++ptr) {
      *ptr = *begin;
    }
  }

  void clear() {
    size_ = 0;
    flag_ = kDirty | kDataInCPU;
  }

  size_t capacity() const {
    return cpu_vec_.capacity() / SizeOfType(typeid(T));
  }

  void reserve(size_t size) {
    size_t pre_size = size_;
    resize(size);
    resize(pre_size);
  }

  const T* Data(platform::Place place) const {
    if (platform::is_gpu_place(place)) {
      return CUDAData(place);
    } else {
199
      return data();
Y
Yu Yang 已提交
200 201 202 203 204 205
    }
  }

  T* MutableData(platform::Place place) {
    if (platform::is_gpu_place(place)) {
      return CUDAMutableData(place);
206
    } else {
Y
Yu Yang 已提交
207
      return data();
208 209 210
    }
  }

Y
Yu Yang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  operator std::vector<T>() const {
    std::vector<T> result;
    result.resize(size());
    std::copy(begin(), end(), result.begin());
    return result;
  }

  bool operator==(const Vector<T>& other) const {
    if (size() != other.size()) return false;
    for (auto it1 = begin(), it2 = other.begin(); it1 < end(); ++it1, ++it2) {
      if (*it1 != *it2) {
        return false;
      }
    }
    return true;
  }
D
dzhwinter 已提交
227 228

 private:
Y
Fix CI  
Yu Yang 已提交
229 230 231 232 233
  void InitEmpty() {
    size_ = 0;
    flag_ = kDataInCPU;
  }

Y
Yu Yang 已提交
234 235 236 237 238 239 240 241 242 243 244
  template <typename Iter>
  void InitByIter(size_t size, Iter begin, Iter end) {
    platform::Place cpu = platform::CPUPlace();
    T* ptr = this->cpu_vec_.template mutable_data<T>(
        framework::make_ddim({static_cast<int64_t>(size)}), cpu);
    for (size_t i = 0; i < size; ++i) {
      *ptr++ = *begin++;
    }
    flag_ = kDataInCPU | kDirty;
    size_ = size;
  }
D
dzhwinter 已提交
245

Y
Yu Yang 已提交
246 247 248 249 250 251 252
  enum DataFlag { kDataInCPU = 0x01, kDataInCUDA = 0x02, kDirty = 0x10 };

  void MutableCPU() {
    if (IsInCUDA() && IsDirty()) {
      // COPY GPU Data To CPU
      Copy(cuda_vec_, platform::CPUPlace(), &cpu_vec_);
      WaitPlace(cuda_vec_.place());
D
dzhwinter 已提交
253
    }
Y
Yu Yang 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    flag_ = kDirty | kDataInCPU;
  }

  void ImmutableCUDA(platform::Place place) const {
    if (IsDirty()) {
      if (IsInCPU()) {
        Copy(cpu_vec_, boost::get<platform::CUDAPlace>(place), &cuda_vec_);
        WaitPlace(place);
        UnsetFlag(kDirty);
        SetFlag(kDataInCUDA);
      } else if (IsInCUDA() && !(place == cuda_vec_.place())) {
        framework::Tensor tmp;
        Copy(cuda_vec_, boost::get<platform::CUDAPlace>(place), &tmp);
        WaitPlace(cuda_vec_.place());
        cuda_vec_.ShareDataWith(tmp);
        // Still dirty
      } else {
        // Dirty && DataInCUDA && Device is same
        // Do nothing
      }
D
dzhwinter 已提交
274
    } else {
Y
Yu Yang 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288
      if (!IsInCUDA()) {
        // Even data is not dirty. However, data is not in CUDA. Copy data.
        Copy(cpu_vec_, boost::get<platform::CUDAPlace>(place), &cuda_vec_);
        WaitPlace(place);
        SetFlag(kDataInCUDA);
      } else if (!(place == cuda_vec_.place())) {
        framework::Tensor tmp;
        Copy(cuda_vec_, boost::get<platform::CUDAPlace>(place), &tmp);
        WaitPlace(cuda_vec_.place());
        cuda_vec_.ShareDataWith(tmp);
      } else {
        // Not Dirty && DataInCUDA && Device is same
        // Do nothing.
      }
D
dzhwinter 已提交
289 290 291
    }
  }

Y
Yu Yang 已提交
292 293 294 295 296 297
  void ImmutableCPU() const {
    if (IsDirty() &&
        !IsInCPU()) {  // If data has been changed in CUDA, or CPU has no data.
      Copy(cuda_vec_, platform::CPUPlace(), &cpu_vec_);
      WaitPlace(cuda_vec_.place());
      UnsetFlag(kDirty);
D
dzhwinter 已提交
298
    }
Y
Yu Yang 已提交
299 300
    SetFlag(kDataInCPU);
  }
D
dzhwinter 已提交
301

Y
Yu Yang 已提交
302 303
  void UnsetFlag(int flag) const { flag_ &= ~flag; }
  void SetFlag(int flag) const { flag_ |= flag; }
D
dzhwinter 已提交
304

Y
Yu Yang 已提交
305
  bool IsDirty() const { return flag_ & kDirty; }
D
dzhwinter 已提交
306

Y
Yu Yang 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  bool IsInCUDA() const { return flag_ & kDataInCUDA; }

  bool IsInCPU() const { return flag_ & kDataInCPU; }

  static void WaitPlace(const platform::Place place) {
    if (platform::is_gpu_place(place)) {
      platform::DeviceContextPool::Instance()
          .Get(boost::get<platform::CUDAPlace>(place))
          ->Wait();
    }
  }

  mutable int flag_;
  mutable Tensor cpu_vec_;
  mutable Tensor cuda_vec_;
  size_t size_;
};
D
dzhwinter 已提交
324 325 326

}  // namespace framework
}  // namespace paddle