depthwise_conv.h 72.1 KB
Newer Older
H
hong 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zlx 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hong 已提交
15
#pragma once
A
Abhinav Arora 已提交
16
#include <vector>
17

H
hong 已提交
18 19 20 21
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/core/hostdevice.h"

22 23 24 25 26 27 28
#ifdef __NVCC__
#include <cub/cub.cuh>
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
H
hong 已提交
29

30 31
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
32
#include "paddle/phi/kernels/funcs/math_function.h"
Z
zlx 已提交
33 34 35 36 37

namespace paddle {
namespace operators {
namespace math {

H
hong 已提交
38 39 40 41 42 43 44 45 46 47 48 49
using DataLayout = framework::DataLayout;

/*
 * \brief Compute the depthwise convolution which include
 * forward process and backpropagation process
 */
template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvFunctor {
 public:
  void operator()(const DeviceContext& context,
50 51
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& filter,
H
hong 已提交
52 53 54
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
55
                  phi::DenseTensor* output,
H
hong 已提交
56 57 58 59 60 61 62 63 64
                  const DataLayout data_layout = DataLayout::kNCHW);
};

template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvInputGradFunctor {
 public:
  void operator()(const DeviceContext& context,
65 66 67
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& filter,
                  const phi::DenseTensor& output_grad,
H
hong 已提交
68 69 70
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
71
                  phi::DenseTensor* input_grad,
H
hong 已提交
72 73 74 75 76 77 78 79 80
                  const DataLayout data_layout = DataLayout::kNCHW);
};

template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvFilterGradFunctor {
 public:
  void operator()(const DeviceContext& context,
81 82
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& output_grad,
H
hong 已提交
83 84 85
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
86
                  phi::DenseTensor* filter_grad,
H
hong 已提交
87 88 89
                  const DataLayout data_layout = DataLayout::kNCHW);
};

90 91 92 93
#define FINAL_MASK 0xffffffff
#define HALF_WARP 16
#define WARP_SIZE 32

94
template <typename T>
95 96 97
__forceinline__ __device__ T WarpReduceSum(T val, unsigned lane_mask) {
  for (int mask = HALF_WARP; mask > 0; mask >>= 1)
    val += platform::CudaShuffleDownSync(lane_mask, val, mask);
W
wangguanzhong 已提交
98 99
  return val;
}
100

W
wangguanzhong 已提交
101
template <typename T>
102 103 104 105 106 107 108
__forceinline__ __device__ T BlockReduceSum(T val, unsigned mask = FINAL_MASK) {
  static __shared__ T shared[WARP_SIZE];
  int tid = threadIdx.y * blockDim.x + threadIdx.x;
  int lane = tid & 0x1f;
  int wid = tid >> 5;

  val = WarpReduceSum<T>(val, mask);
109

W
wangguanzhong 已提交
110
  __syncthreads();
111 112 113 114 115 116 117 118 119
  if (lane == 0) shared[wid] = val;

  __syncthreads();

  // align block_span to WARP_SIZE
  int block_span = (blockDim.x * blockDim.y + WARP_SIZE - 1) >> 5;
  val = (lane < block_span) ? shared[lane] : static_cast<T>(0.0f);
  val = WarpReduceSum<T>(val, mask);

W
wangguanzhong 已提交
120
  return val;
121 122
}

123 124 125 126 127 128 129 130
#define ARG_DEFINE_KernelDepthwiseConv                                         \
  const T *const input_data, const T *const filter_data, const int batch_size, \
      const int output_channels, const int output_height,                      \
      const int output_width, const int input_channels,                        \
      const int input_height, const int input_width,                           \
      const int filter_multiplier, const int filter_height,                    \
      const int filter_width, const int stride_height, const int stride_width, \
      const int padding_height, const int padding_width,                       \
131
      const int dilate_height, const int dilate_width, T *const output_data
132

133 134
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
135
template <typename T, int c_filter, bool fuse_relu_before_conv>
136 137
__device__ __inline__ void KernelDepthwiseConvNCHW(
    ARG_DEFINE_KernelDepthwiseConv) {
138 139
  const int fw_size = c_filter != -1 ? c_filter : filter_width;
  const int fh_size = c_filter != -1 ? c_filter : filter_height;
140 141 142 143
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx >= (output_channels * batch_size * output_height * output_width))
    return;

144 145 146 147 148 149 150 151
  int tmp_1 = idx / output_width;
  const int w_out = idx - tmp_1 * output_width;
  int tmp_2 = tmp_1 / output_height;
  const int h_out = tmp_1 - tmp_2 * output_height;
  tmp_1 = tmp_2;
  tmp_2 = tmp_1 / output_channels;
  const int c_out = tmp_1 - tmp_2 * output_channels;
  const int batch = tmp_2;
152 153

  const int c_in = c_out / filter_multiplier;
154
  T value(0);
155 156 157

  int in_offset =
      ((batch * input_channels + c_in) * input_height) * input_width;
158 159 160
  int weight_offset = c_out * filter_height * filter_width;
  int h_in_start = -padding_height + h_out * stride_height;
  int w_in_start = -padding_width + w_out * stride_width;
161 162

#pragma unroll
163 164
  for (int fh = 0, h_in = h_in_start; fh < fh_size;
       fh++, h_in += dilate_height) {
165
#pragma unroll
166 167 168
    for (int fw = 0, w_in = w_in_start; fw < fw_size;
         fw++, w_in += dilate_width) {
      if (h_in >= 0 && h_in < input_height && w_in >= 0 && w_in < input_width) {
169 170 171
        int offset = in_offset + h_in * input_width + w_in;
        T in_data = input_data[offset];
        if (fuse_relu_before_conv) {
172 173
          value += filter_data[weight_offset] *
                   static_cast<T>(max(0.0f, static_cast<double>(in_data)));
174
        } else {
175
          value += filter_data[weight_offset] * in_data;
176
        }
177
      }
178 179 180
      weight_offset++;
    }
  }
181
  output_data[idx] = value;
182
}
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
// A Cuda kernel to compute the depthwise convolution forward pass
// in NHWC format.
template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvNHWC(
    ARG_DEFINE_KernelDepthwiseConv) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx >= (output_channels * batch_size * output_height * output_width))
    return;

  const int c_out = idx % output_channels;
  const int w_out = (idx / output_channels) % output_width;
  const int h_out = (idx / output_channels / output_width) % output_height;
  const int batch = idx / output_width / output_height / output_channels;

  const int c_in = c_out / filter_multiplier;
199
  T value(0);
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  const int h_in_start = -padding_height + h_out * stride_height;
  const int w_in_start = -padding_width + w_out * stride_width;
  const int h_in_end = h_in_start + filter_height * dilate_height;
  const int w_in_end = w_in_start + filter_width * dilate_width;

  const int h_end = h_in_end < input_height ? h_in_end : input_height;
  const int w_end = w_in_end < input_width ? w_in_end : input_width;
  const int h_start = h_in_start > 0 ? h_in_start : 0;
  const int w_start = w_in_start > 0 ? w_in_start : 0;
  int weight_offset = 0;

#pragma unroll
  for (int h_in = h_in_start; h_in < h_in_end; h_in += dilate_height) {
#pragma unroll
    for (int w_in = w_in_start; w_in < w_in_end; w_in += dilate_width) {
      if (h_in >= h_start && h_in < h_end && w_in >= w_start && w_in < w_end) {
        int offset = ((batch * input_height + h_in) * input_width + w_in) *
217
                         input_channels +
218 219
                     c_in;
        T in_data = input_data[offset];
220
        const T* weight = filter_data + weight_offset * output_channels + c_out;
221
        if (fuse_relu_before_conv) {
222 223
          value += weight[0] *
                   static_cast<T>(max(0.0f, static_cast<double>(in_data)));
224
        } else {
225
          value += weight[0] * in_data;
226
        }
Z
zlx 已提交
227
      }
228
      weight_offset++;
Z
zlx 已提交
229 230
    }
  }
231 232 233 234
  int index = batch * output_channels * output_height * output_width +
              h_out * output_width * output_channels + w_out * output_channels +
              c_out;
  output_data[index] = value;
Z
zlx 已提交
235
}
236

237
template <typename T, int c_filter, bool fuse_relu_before_conv>
238
__device__ __inline__ void KernelDepthwiseConvCFilterNCHW(
239
    ARG_DEFINE_KernelDepthwiseConv) {
240 241
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];
242 243 244 245
  const int batch = blockIdx.y;
  const int c_out = blockIdx.x;
  const T* weight = filter_data + c_out * c_filter * c_filter;
  for (int i = 0; i < c_filter * c_filter; i++) r_weight[i] = weight[i];
246

247 248 249 250 251 252
  for (int w_out = threadIdx.x; w_out < output_width; w_out += blockDim.x) {
    for (int h_out = threadIdx.y; h_out < output_height; h_out += blockDim.y) {
      const int batch = blockIdx.y;
      const int c_out = blockIdx.x;

      const int c_in = c_out / filter_multiplier;
253
      T value(0);
254 255 256 257 258
      const int h_in_start = -padding_height + h_out * stride_height;
      const int w_in_start = -padding_width + w_out * stride_width;
      const int h_in_end = h_in_start + c_filter * dilate_height;
      const int w_in_end = w_in_start + c_filter * dilate_width;

259 260
      int in_offset =
          ((batch * input_channels + c_in) * input_height) * input_width;
261 262 263 264 265 266 267 268 269 270 271 272

      const int h_end = h_in_end < input_height ? h_in_end : input_height;
      const int w_end = w_in_end < input_width ? w_in_end : input_width;
      const int h_start = h_in_start > 0 ? h_in_start : 0;
      const int w_start = w_in_start > 0 ? w_in_start : 0;

      for (int h_in = h_in_start, h_f = 0; h_f < c_filter;
           h_in += dilate_height, h_f++) {
        for (int w_in = w_in_start, w_f = 0; w_f < c_filter;
             w_in += dilate_width, w_f++) {
          if (h_in >= 0 && h_in < input_height && w_in >= 0 &&
              w_in < input_width) {
273 274 275
            int offset = in_offset + h_in * input_width + w_in;
            if (fuse_relu_before_conv) {
              value += r_weight[h_f * c_filter + w_f] *
276 277
                       static_cast<T>(
                           max(0.0f, static_cast<double>(input_data[offset])));
278
            } else {
279
              value += r_weight[h_f * c_filter + w_f] * input_data[offset];
280
            }
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
          }
        }
      }
      int index =
          ((batch * gridDim.x + c_out) * output_height + h_out) * output_width +
          w_out;
      output_data[index] = value;
    }
  }
}

template <typename T, int c_filter, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvCFilterNHWC(
    ARG_DEFINE_KernelDepthwiseConv) {
  const int batch = blockIdx.z;
  int h_out = blockIdx.x * dilate_height + blockIdx.y;
  if (h_out >= output_height) {
    return;
  }
  int in_offset = batch * input_height * input_width * input_channels;
  int out_offset =
      (batch * output_height + h_out) * output_width * output_channels;
  const int h_in_start = -padding_height + h_out * stride_height;
  const int wi_size = (output_width + dilate_width - 1) / dilate_width;
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];

  for (int c_out = threadIdx.x; c_out < output_channels; c_out += blockDim.x) {
    for (int i = 0; i < c_filter * c_filter; i++) {
      const T* weight = filter_data + i * output_channels + c_out;
      r_weight[i] = weight[0];
    }
    const int c_in = c_out / filter_multiplier;
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int w_out = i_wi * dilate_width + i_dw;
      if (w_out >= output_width) {
        continue;
      }
321
      T value(0);
322 323 324 325 326 327 328 329 330
      const int w_in_start = -padding_width + w_out * stride_width;
      for (int h_in = h_in_start, h_f = 0; h_f < c_filter;
           h_in += dilate_height, h_f++) {
        for (int w_in = w_in_start, w_f = 0; w_f < c_filter;
             w_in += dilate_width, w_f++) {
          if (h_in >= 0 && h_in < input_height && w_in >= 0 &&
              w_in < input_width) {
            int offset =
                in_offset + (h_in * input_width + w_in) * input_channels + c_in;
331 332
            if (fuse_relu_before_conv) {
              value += r_weight[h_f * c_filter + w_f] *
333 334
                       static_cast<T>(
                           max(0.0, static_cast<double>(input_data[offset])));
335 336 337
            } else {
              value += r_weight[h_f * c_filter + w_f] * input_data[offset];
            }
338 339 340
          }
        }
      }
341
      int index = out_offset + w_out * output_channels + c_out;
342 343 344 345 346
      output_data[index] = value;
    }
  }
}

H
hong 已提交
347 348 349 350 351 352
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
353
__global__ void KernelDepthwiseConvSp(ARG_DEFINE_KernelDepthwiseConv) {
354 355 356 357 358 359 360 361 362
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }
  if (c_filter == -1) {
363
    if (data_layout != DataLayout::kNHWC) {
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
      KernelDepthwiseConvNCHW<T, c_filter, fuse_relu_before_conv>(
          input_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          output_data);
384
    } else {
H
hong 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
      KernelDepthwiseConvNHWC<T, fuse_relu_before_conv>(input_data,
                                                        filter_data,
                                                        batch_size,
                                                        output_channels,
                                                        output_height,
                                                        output_width,
                                                        input_channels,
                                                        input_height,
                                                        input_width,
                                                        final_filter_multiplier,
                                                        filter_height,
                                                        filter_width,
                                                        h_stride,
                                                        w_stride,
                                                        padding_height,
                                                        padding_width,
                                                        dilate_height,
                                                        dilate_width,
                                                        output_data);
404 405
    }
  } else {
406 407
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvCFilterNCHW<T, c_filter, fuse_relu_before_conv>(
H
hong 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
          input_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
426 427 428
          output_data);
    } else {
      KernelDepthwiseConvCFilterNHWC<T, c_filter, fuse_relu_before_conv>(
H
hong 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
          input_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
447 448
          output_data);
    }
449
  }
450 451
}

Z
zlx 已提交
452
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
453
#define ARG_DEFINE_KernelDepthwiseConvInputGrad                                \
454 455 456 457 458
  const T *const input_data, const T *const output_grad_data,                  \
      const T *const filter_data, const int batch_size,                        \
      const int output_channels, const int output_height,                      \
      const int output_width, const int input_channels,                        \
      const int input_height, const int input_width,                           \
459 460 461 462
      const int filter_multiplier, const int filter_height,                    \
      const int filter_width, const int stride_height, const int stride_width, \
      const int padding_height, const int padding_width,                       \
      const int dilate_height, const int dilate_width,                         \
463
      T *const input_grad_data
464

465
template <typename T, int c_filter, bool fuse_relu_before_conv>
466
__device__ __inline__ void KernelDepthwiseConvInputGradNCHW(
467
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
468 469 470 471 472 473 474 475 476 477 478 479
  const int fw_size = c_filter != -1 ? c_filter : filter_width;
  const int fh_size = c_filter != -1 ? c_filter : filter_height;
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= batch_size * input_channels * input_height * input_width) {
    return;
  }
  if (fuse_relu_before_conv) {
    if (input_data[idx] <= static_cast<T>(0.0f)) {
      input_grad_data[idx] = 0;
      return;
    }
  }
480

481 482 483 484 485 486 487 488
  int tmp_1 = idx / input_width;
  const int w_in = idx - tmp_1 * input_width;
  int tmp_2 = tmp_1 / input_height;
  const int h_in = tmp_1 - tmp_2 * input_height;
  tmp_1 = tmp_2;
  tmp_2 = tmp_1 / input_channels;
  const int c_in = tmp_1 - tmp_2 * input_channels;
  const int batch = tmp_2;
489

490 491 492 493
  T value(0);
  for (int c_mul = 0; c_mul < filter_multiplier; ++c_mul) {
    int c_out = c_in * filter_multiplier + c_mul;
    int filter_offset = c_out * filter_height * filter_width;
494

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
#pragma unroll
    for (int fh = 0; fh < fh_size; ++fh) {
#pragma unroll
      for (int fw = 0; fw < fw_size; ++fw) {
        int h_out = h_in + padding_height - fh * dilate_height;
        int w_out = w_in + padding_width - fw * dilate_width;
        if ((h_out - h_out / stride_height * stride_height == 0) &&
            (w_out - w_out / stride_width * stride_width == 0)) {
          h_out /= stride_height;
          w_out /= stride_width;

          if (h_out >= 0 && h_out < output_height && w_out >= 0 &&
              w_out < output_width) {
            int output_grad_offset =
                ((batch * output_channels + c_out) * output_height + h_out) *
                    output_width +
                w_out;
            value += output_grad_data[output_grad_offset] *
                     filter_data[filter_offset];
514 515
          }
        }
516
        filter_offset++;
517 518 519
      }
    }
  }
520
  input_grad_data[idx] = value;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
}

template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvInputGradNHWC(
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
  const int batch = blockIdx.z;
  int h_in = blockIdx.x * dilate_height + blockIdx.y;
  if (h_in >= input_height) {
    return;
  }

  for (int c_in = threadIdx.x; c_in < input_channels; c_in += blockDim.x) {
    for (int w_in = threadIdx.y; w_in < input_width; w_in += blockDim.y) {
      int h_out_start =
          h_in - (filter_height - 1) * dilate_height + padding_height;
      int w_out_start =
          w_in - (filter_width - 1) * dilate_width + padding_width;

539
      T value(0);
540 541 542 543
      int index = ((batch * input_height + h_in) * input_width + w_in) *
                      input_channels +
                  c_in;
      if (fuse_relu_before_conv) {
544
        if (input_data[index] <= T(0)) {
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
          input_grad_data[index] = 0;
          continue;
        }
      }

      for (int c_i = 0; c_i < filter_multiplier; c_i++) {
        int c_out = c_in * filter_multiplier + c_i;
        int weight_offset = filter_height * filter_width;
        for (int h_out = h_out_start, h_f = 0; h_f < filter_height;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < filter_width;
               w_out += dilate_width, w_f++) {
            weight_offset--;
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
              int output_grad_offset =
                  ((batch * output_height + s_h_out) * output_width + s_w_out) *
                      output_channels +
                  c_out;
              int filter_offset = weight_offset * output_channels + c_out;
568 569 570 571
              value += output_grad_data[output_grad_offset] *
                       filter_data[filter_offset];
            }
          }
Z
zlx 已提交
572 573
        }
      }
574
      input_grad_data[index] = value;
Z
zlx 已提交
575 576 577 578
    }
  }
}

H
hong 已提交
579 580 581
template <typename T,
          int c_filter,
          int c_filter_multiplier,
582
          bool fuse_relu_before_conv>
583
__device__ __inline__ void KernelDepthwiseConvInputGradCFilterNCHW(
584
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
585 586
  const int kWeightSize = c_filter * c_filter * c_filter_multiplier + 1;
  T r_weight[kWeightSize];
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
  const int batch = blockIdx.y;
  const int c_in = blockIdx.x;

  for (int c_i = 0; c_i < filter_multiplier; c_i++) {
    int c_out = c_in * filter_multiplier + c_i;
    const T* weight = filter_data + c_out * c_filter * c_filter;
    for (int i = 0; i < c_filter * c_filter; i++)
      r_weight[i + c_i * c_filter * c_filter] =
          weight[c_filter * c_filter - i - 1];
  }

  for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) {
    for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) {
      int h_out_start = h_in - (c_filter - 1) * dilate_height + padding_height;
      int w_out_start = w_in - (c_filter - 1) * dilate_width + padding_width;

603
      T value(0);
604 605 606
      int index =
          ((batch * gridDim.x + c_in) * input_height + h_in) * input_width +
          w_in;
607
      if (fuse_relu_before_conv) {
608
        if (input_data[index] <= T(0)) {
609 610 611 612
          input_grad_data[index] = 0;
          continue;
        }
      }
613 614 615 616 617 618 619 620 621 622 623 624

      for (int c_i = 0; c_i < filter_multiplier; c_i++) {
        int c_out = c_in * filter_multiplier + c_i;
        for (int h_out = h_out_start, h_f = 0; h_f < c_filter;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < c_filter;
               w_out += dilate_width, w_f++) {
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
625 626 627 628 629
              int output_grad_offset =
                  ((batch * output_channels + c_out) * output_height +
                   s_h_out) *
                      output_width +
                  s_w_out;
630 631 632 633 634 635 636 637 638 639 640 641
              value +=
                  output_grad_data[output_grad_offset] *
                  r_weight[h_f * c_filter + w_f + c_i * c_filter * c_filter];
            }
          }
        }
      }
      input_grad_data[index] = value;
    }
  }
}

H
hong 已提交
642 643 644
template <typename T,
          int c_filter,
          int c_filter_multiplier,
645
          bool fuse_relu_before_conv>
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
__device__ __inline__ void KernelDepthwiseConvInputGradCFilterNHWC(
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
  int h_in = blockIdx.x * dilate_height + blockIdx.y;
  if (h_in >= input_height) {
    return;
  }
  const int kWeightSize = c_filter * c_filter * c_filter_multiplier + 1;
  T r_weight[kWeightSize];
  const int batch = blockIdx.z;
  const int wi_size = (input_width + dilate_width - 1) / dilate_width;
  const int h_out_start =
      h_in - (c_filter - 1) * dilate_height + padding_height;

  for (int c_in = threadIdx.x; c_in < input_channels; c_in += blockDim.x) {
    for (int c_i = 0; c_i < c_filter_multiplier; c_i++) {
      int c_out = c_in * c_filter_multiplier + c_i;
      for (int i = 0; i < c_filter * c_filter; i++)
        r_weight[i + c_i * c_filter * c_filter] =
            filter_data[(c_filter * c_filter - i - 1) * output_channels +
                        c_out];
    }
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int w_in = i_wi * dilate_width + i_dw;
      if (w_in >= input_width) {
        continue;
      }
      int w_out_start = w_in - (c_filter - 1) * dilate_width + padding_width;

676
      T value(0);
677 678 679 680
      int index = ((batch * input_height + h_in) * input_width + w_in) *
                      input_channels +
                  c_in;
      if (fuse_relu_before_conv) {
681
        if (input_data[index] <= T(0)) {
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
          input_grad_data[index] = 0;
          continue;
        }
      }

      for (int c_i = 0; c_i < c_filter_multiplier; c_i++) {
        int c_out = c_in * c_filter_multiplier + c_i;
        for (int h_out = h_out_start, h_f = 0; h_f < c_filter;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < c_filter;
               w_out += dilate_width, w_f++) {
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
              int output_grad_offset =
                  ((batch * output_height + s_h_out) * output_width + s_w_out) *
                      output_channels +
                  c_out;
              value +=
                  output_grad_data[output_grad_offset] *
                  r_weight[h_f * c_filter + w_f + c_i * c_filter * c_filter];
            }
          }
        }
      }
      input_grad_data[index] = value;
    }
  }
}

H
hong 已提交
714 715 716 717 718 719
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
720
__global__ void KernelDepthwiseConvInputGradSp(
721
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
722 723 724 725 726 727 728 729 730 731 732
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }

  if (c_filter_multiplier == 0 || c_filter == -1) {
    if (data_layout != DataLayout::kNHWC) {
733
      KernelDepthwiseConvInputGradNCHW<T, c_filter, fuse_relu_before_conv>(
H
hong 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
754 755
    } else {
      KernelDepthwiseConvInputGradNHWC<T, fuse_relu_before_conv>(
H
hong 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
776 777 778
    }
  } else {
    if (data_layout != DataLayout::kNHWC) {
H
hong 已提交
779 780 781
      KernelDepthwiseConvInputGradCFilterNCHW<T,
                                              c_filter,
                                              c_filter_multiplier,
782
                                              fuse_relu_before_conv>(
H
hong 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          c_filter_multiplier,
          filter_height,
          filter_width,
          c_stride,
          c_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
803
    } else {
H
hong 已提交
804 805 806
      KernelDepthwiseConvInputGradCFilterNHWC<T,
                                              c_filter,
                                              c_filter_multiplier,
807
                                              fuse_relu_before_conv>(
H
hong 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          c_filter_multiplier,
          filter_height,
          filter_width,
          c_stride,
          c_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
828 829
    }
  }
830 831
}

832
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
833
template <typename T, bool fuse_relu_before_conv>
834
__device__ __inline__ void KernelDepthwiseConvFilterGradNCHW(
H
hong 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
  T f_grad(0);
  const bool loop_batch = output_height * output_width >= WARP_SIZE;

  int kw_id = blockIdx.x;
  int kh_id = blockIdx.y;
  int oc_id = blockIdx.z;
  int ic_id = oc_id / filter_multiplier;
  int idx = ((blockIdx.z * gridDim.y) + blockIdx.y) * gridDim.x + blockIdx.x;

  const int ohw = output_height * output_width;
  const int onhw = num * ohw;
  const int h_offset = kh_id * dilate_height - padding_height;
  const int w_offset = kw_id * dilate_width - padding_width;

  if (loop_batch) {
    for (int og_w = threadIdx.x; og_w < output_width; og_w += blockDim.x) {
      for (int bid = 0; bid < num; ++bid) {
        for (int og_h = threadIdx.y; og_h < output_height; og_h += blockDim.y) {
          int i_h = og_h * stride_height + h_offset;
          int i_w = og_w * stride_width + w_offset;

          if (i_w >= 0 && i_w < input_width && i_h >= 0 && i_h < input_height) {
            int input_offset =
                ((bid * input_channels + ic_id) * input_height + i_h) *
                    input_width +
                i_w;
            int output_grad_offset =
                ((bid * output_channels + oc_id) * output_height + og_h) *
                    output_width +
                og_w;
            if (fuse_relu_before_conv) {
              f_grad +=
                  output_grad_data[output_grad_offset] *
                  static_cast<T>(
                      max(0.0f, static_cast<double>(input_data[input_offset])));
            } else {
              f_grad += output_grad_data[output_grad_offset] *
                        input_data[input_offset];
            }
          }
        }
      }
    }
  } else {
    for (int id = threadIdx.x; id < onhw; id += blockDim.x) {
      int bid = id / ohw;
      int og_hw = id - bid * ohw;
      int og_h = og_hw / output_width;
      int og_w = og_hw - og_h * output_width;

      int i_h = og_h * stride_height + h_offset;
      int i_w = og_w * stride_width + w_offset;

      if (i_w >= 0 && i_w < input_width && i_h >= 0 && i_h < input_height) {
        int input_offset =
            ((bid * input_channels + ic_id) * input_height + i_h) *
                input_width +
            i_w;
        int output_grad_offset = (bid * output_channels + oc_id) * ohw + og_hw;
913
        if (fuse_relu_before_conv) {
914 915 916
          f_grad += output_grad_data[output_grad_offset] *
                    static_cast<T>(max(
                        0.0f, static_cast<double>(input_data[input_offset])));
917
        } else {
918 919
          f_grad +=
              output_grad_data[output_grad_offset] * input_data[input_offset];
920 921 922 923
        }
      }
    }
  }
W
wangguanzhong 已提交
924

925 926 927 928
  T val = BlockReduceSum<T>(f_grad);
  if (threadIdx.x == 0 && threadIdx.y == 0) {
    filter_grad_data[idx] = val;
  }
929 930 931 932
}

template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvFilterGradNHWC(
H
hong 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
952 953 954 955 956 957
  int bid = blockIdx.z;
  int image_h = blockIdx.y;
  int kernel_iw = blockIdx.x % filter_width;
  int kernel_ih = blockIdx.x / filter_width;
  for (int kernel_id = threadIdx.x; kernel_id < output_channels;
       kernel_id += blockDim.x) {
958
    T s(0);
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
    int gbid =
        ((kernel_id * filter_height) + kernel_ih) * filter_width + kernel_iw;
    for (int image_w = threadIdx.y; image_w < output_width;
         image_w += blockDim.y) {
      int kernel_h = kernel_ih * dilate_height - padding_height;
      int kernel_w = kernel_iw * dilate_width - padding_width;

      int image_hk = image_h * stride_height + kernel_h;
      int image_wk = image_w * stride_width + kernel_w;
      if (image_hk < 0 || image_hk >= input_height) continue;
      if (image_wk < 0 || image_wk >= input_width) continue;
#define gaid(N, H, W, C) \
  ((((N)*output_height + (H)) * output_width + (W)) * output_channels + (C))
      int input_id =
          ((bid * input_height + image_hk) * input_width + image_wk) *
              input_channels +
          kernel_id / filter_multiplier;
      if (fuse_relu_before_conv) {
        s += output_grad_data[gaid(bid, image_h, image_w, kernel_id)] *
978 979
             static_cast<T>(
                 max(0.0f, static_cast<double>(input_data[input_id])));
980 981 982 983 984 985 986 987 988 989 990 991
      } else {
        s += output_grad_data[gaid(bid, image_h, image_w, kernel_id)] *
             input_data[input_id];
      }
#undef gaid
    }
    platform::CudaAtomicAdd(&filter_grad_data[gbid], s);
  }
}

template <typename T, int c_filter, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvFilterGradCFilterNHWC(
H
hong 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
  const int bid = blockIdx.z;
  int image_h = blockIdx.x * dilate_height + blockIdx.y;
  if (image_h >= output_height) {
    return;
  }
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];
  const int wi_size = (output_width + dilate_width - 1) / dilate_width;

  for (int kernel_id = threadIdx.x; kernel_id < output_channels;
       kernel_id += blockDim.x) {
    for (int i = 0; i < c_filter * c_filter; ++i) {
      r_weight[i] = 0;
    }
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int image_w = i_wi * dilate_width + i_dw;
      if (image_w >= output_width) {
        continue;
      }
      for (int kernel_ih = 0; kernel_ih < c_filter; ++kernel_ih) {
        for (int kernel_iw = 0; kernel_iw < c_filter; ++kernel_iw) {
          int kernel_h = kernel_ih * dilate_height - padding_height;
          int kernel_w = kernel_iw * dilate_width - padding_width;
          int image_hk = image_h * stride_height + kernel_h;
          int image_wk = image_w * stride_width + kernel_w;
          if (image_hk < 0 || image_hk >= input_height) continue;
          if (image_wk < 0 || image_wk >= input_width) continue;
          int input_id =
1041
              ((bid * input_height + image_hk) * input_width + image_wk) *
1042
                  input_channels +
1043
              kernel_id / filter_multiplier;
1044 1045 1046 1047
          int output_id =
              ((bid * output_height + image_h) * output_width + image_w) *
                  output_channels +
              kernel_id;
1048
          T s(0);
1049
          if (fuse_relu_before_conv) {
1050
            s = output_grad_data[output_id] *
1051 1052
                static_cast<T>(
                    max(0.0f, static_cast<double>(input_data[input_id])));
1053
          } else {
1054
            s = output_grad_data[output_id] * input_data[input_id];
1055
          }
1056
          r_weight[kernel_ih * c_filter + kernel_iw] += s;
1057
        }
1058
      }
Z
zlx 已提交
1059
    }
1060 1061 1062 1063
    for (int i = 0; i < c_filter * c_filter; ++i) {
      T* weight = filter_grad_data + i * output_channels + kernel_id;
      platform::CudaAtomicAdd(&weight[0], r_weight[i]);
    }
Z
zlx 已提交
1064
  }
1065 1066
}

H
hong 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
__global__ void KernelDepthwiseConvFilterGradSp(const T* output_grad_data,
                                                const T* input_data,
                                                const int num,
                                                const int output_channels,
                                                const int output_height,
                                                const int output_width,
                                                const int input_channels,
                                                const int input_height,
                                                const int input_width,
                                                const int filter_multiplier,
                                                const int filter_height,
                                                const int filter_width,
                                                const int stride_height,
                                                const int stride_width,
                                                const int padding_height,
                                                const int padding_width,
                                                const int dilate_height,
                                                const int dilate_width,
                                                T* filter_grad_data) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }
  if (c_filter_multiplier == 0 || c_filter == -1) {
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvFilterGradNCHW<T, fuse_relu_before_conv>(
H
hong 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1121 1122 1123
          filter_grad_data);
    } else {
      KernelDepthwiseConvFilterGradNHWC<T, fuse_relu_before_conv>(
H
hong 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1142 1143 1144 1145 1146
          filter_grad_data);
    }
  } else {
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvFilterGradNCHW<T, fuse_relu_before_conv>(
H
hong 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1165 1166
          filter_grad_data);
    } else {
H
hong 已提交
1167 1168
      KernelDepthwiseConvFilterGradCFilterNHWC<T,
                                               c_filter,
1169
                                               fuse_relu_before_conv>(
H
hong 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1188 1189 1190
          filter_grad_data);
    }
  }
Z
zlx 已提交
1191 1192 1193 1194 1195 1196 1197
}

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
1198
template <class T, bool fuse_relu_before_conv>
H
hong 已提交
1199
class DepthwiseConvFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
Z
zlx 已提交
1200
 public:
H
hong 已提交
1201
  void operator()(const phi::GPUContext& context,
1202 1203
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& filter,
X
xzl 已提交
1204
                  const std::vector<int>& strides,
1205
                  const std::vector<int>& paddings,
H
hong 已提交
1206
                  const std::vector<int>& dilations,
1207
                  phi::DenseTensor* output,
1208
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1209
    const int batch_size = input.dims()[0];
1210
    const int input_channels =
1211
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1212
    const int input_height =
1213
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1214
    const int input_width =
1215
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1216
    const int output_channels =
1217
        (data_layout != DataLayout::kNHWC ? output->dims()[1]
1218 1219
                                          : output->dims()[3]);
    const int output_height =
1220
        (data_layout != DataLayout::kNHWC ? output->dims()[2]
1221 1222
                                          : output->dims()[1]);
    const int output_width =
1223
        (data_layout != DataLayout::kNHWC ? output->dims()[3]
1224
                                          : output->dims()[2]);
1225 1226
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
Z
zlx 已提交
1227 1228 1229 1230
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1231 1232
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1233 1234 1235 1236 1237

    const T* input_data = input.data<T>();
    const T* filter_data = filter.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

1238
    phi::DenseTensor filter_hwc;
1239
    if (data_layout == DataLayout::kNHWC) {
H
hong 已提交
1240 1241 1242 1243
      framework::DDim filter_hwc_dims({filter.dims()[2],
                                       filter.dims()[3],
                                       filter.dims()[0],
                                       filter.dims()[1]});
1244 1245 1246
      filter_hwc.Resize(filter_hwc_dims);
      filter_hwc.mutable_data<T>(context.GetPlace());
      std::vector<int> perm_axis({2, 3, 0, 1});
H
hong 已提交
1247
      phi::funcs::TransposeNormal<phi::GPUContext, T> trans;
1248 1249 1250 1251
      trans(context, filter, &filter_hwc, perm_axis);
      filter_data = filter_hwc.data<T>();
    }

1252
    int thread = 512;
1253 1254 1255
    int blocks;
    dim3 threads;
    dim3 grid;
W
wangguanzhong 已提交
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    if (data_layout != DataLayout::kNHWC) {
      if (output_width > 1024 && output_width <= 2048)
        thread = (output_width - 1) / 2 + 1;
      else if (output_width > 512 && output_width <= 1024)
        thread = output_width;
#ifdef __HIPCC__
      thread = std::min(thread, 256);
#endif
      blocks = std::min(std::max(thread / output_width, 1), output_height);
      threads = dim3(std::min(output_width, thread), blocks, 1);
      grid = dim3(output_channels, batch_size, 1);
    } else {
1269
#ifdef __HIPCC__
1270
      thread = std::min(thread, 256);
1271
#endif
1272 1273 1274 1275 1276
      blocks = std::min(
          std::max(thread / output_channels, 1),
          ((output_width + dilate_width - 1) / dilate_width) * dilate_width);
      threads = dim3(std::min(output_channels, thread), blocks, 1);
      grid = dim3((output_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1277 1278
                  dilate_height,
                  batch_size);
1279
    }
1280
    int filter_multiplier = output_channels / input_channels;
1281
    int nums_output = output->numel();
1282 1283 1284
#ifdef __HIPCC__
    int block_size = 256;
#else
1285
    int block_size = 512;
1286
#endif
1287
    int grid_size = (nums_output + block_size - 1) / block_size;
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
#define check_case(c_filter_multiplier, c_stride, c_filter)             \
  if (c_filter_multiplier == 0 ||                                       \
      filter_multiplier == c_filter_multiplier &&                       \
          stride_height == stride_width && stride_height == c_stride && \
          (ksize_height == ksize_width && ksize_height == c_filter ||   \
           c_filter == -1)) {                                           \
    if (c_filter == -1) {                                               \
      threads.x = block_size;                                           \
      grid.x = grid_size;                                               \
      threads.y = threads.z = grid.y = grid.z = 1;                      \
    }                                                                   \
    if (data_layout != DataLayout::kNHWC) {                             \
      KernelDepthwiseConvSp<T,                                          \
                            c_filter_multiplier,                        \
                            c_stride,                                   \
                            c_filter,                                   \
                            DataLayout::kNCHW,                          \
                            fuse_relu_before_conv>                      \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   output_data);        \
    } else {                                                            \
      KernelDepthwiseConvSp<T,                                          \
                            c_filter_multiplier,                        \
                            c_stride,                                   \
                            c_filter,                                   \
                            DataLayout::kNHWC,                          \
                            fuse_relu_before_conv>                      \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   output_data);        \
    }                                                                   \
    return;                                                             \
1354
  }
1355 1356 1357 1358 1359 1360
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
1361 1362 1363 1364 1365 1366
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
1367 1368 1369
    check_case(0, 0, -1);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
1370
#undef check_case
Z
zlx 已提交
1371 1372 1373
  }
};

1374
template <typename T, bool fuse_relu_before_conv>
H
hong 已提交
1375
class DepthwiseConvInputGradFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
Z
zlx 已提交
1376
 public:
H
hong 已提交
1377
  void operator()(const phi::GPUContext& context,
1378 1379 1380
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& filter,
                  const phi::DenseTensor& output_grad,
X
xzl 已提交
1381 1382
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
1383
                  const std::vector<int>& dilations,
1384
                  phi::DenseTensor* input_grad,
1385
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1386
    const int batch_size = input.dims()[0];
1387
    const int input_channels =
1388
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1389
    const int input_height =
1390
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1391
    const int input_width =
1392
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1393
    const int output_channels =
1394
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[1]
1395 1396
                                          : output_grad.dims()[3]);
    const int output_height =
1397
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[2]
1398 1399
                                          : output_grad.dims()[1]);
    const int output_width =
1400
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[3]
1401
                                          : output_grad.dims()[2]);
1402 1403 1404
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
    const int stride_height = strides[0];
Z
zlx 已提交
1405 1406 1407
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1408 1409
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1410

1411
    const T* input_data = input.data<T>();
1412
    const T* filter_data = filter.data<T>();
Z
zlx 已提交
1413 1414 1415
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

1416
    phi::DenseTensor filter_hwc;
1417
    if (data_layout == DataLayout::kNHWC) {
H
hong 已提交
1418 1419 1420 1421
      framework::DDim filter_hwc_dims({filter.dims()[2],
                                       filter.dims()[3],
                                       filter.dims()[0],
                                       filter.dims()[1]});
1422 1423 1424
      filter_hwc.Resize(filter_hwc_dims);
      filter_hwc.mutable_data<T>(context.GetPlace());
      std::vector<int> perm_axis({2, 3, 0, 1});
H
hong 已提交
1425
      phi::funcs::TransposeNormal<phi::GPUContext, T> trans;
1426 1427 1428 1429
      trans(context, filter, &filter_hwc, perm_axis);
      filter_data = filter_hwc.data<T>();
    }

1430
    int thread = 512;
1431 1432 1433
    int blocks;
    dim3 threads;
    dim3 grid;
W
wangguanzhong 已提交
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
    if (data_layout != DataLayout::kNHWC) {
      if (input_width > 1024 && input_width <= 2048) {
        thread = (input_width - 1) / 2 + 1;
      } else if (input_width > 512 && input_width <= 1024) {
        thread = input_width;
      }
      blocks = std::min(std::max(thread / input_width, 1), input_height);
      threads = dim3(std::min(input_width, thread), blocks, 1);
      grid = dim3(input_channels, batch_size, 1);
    } else {
      blocks = std::min(
          std::max(thread / input_channels, 1),
          ((input_width + dilate_width - 1) / dilate_width) * dilate_width);
      threads = dim3(std::min(input_channels, thread), blocks, 1);
      grid = dim3((input_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1450 1451
                  dilate_height,
                  batch_size);
1452
    }
1453
    int filter_multiplier = output_channels / input_channels;
1454 1455 1456 1457 1458 1459 1460
    int nums_input = input_grad->numel();
#ifdef __HIPCC__
    int block_size = 256;
#else
    int block_size = 512;
#endif
    int grid_size = (nums_input + block_size - 1) / block_size;
1461

1462 1463 1464 1465 1466 1467 1468
#define check_case(c_filter_multiplier, c_stride, c_filter)             \
  if (c_filter_multiplier == 0 ||                                       \
      filter_multiplier == c_filter_multiplier &&                       \
          stride_height == stride_width && stride_height == c_stride && \
          (ksize_height == ksize_width && ksize_height == c_filter ||   \
           c_filter == -1)) {                                           \
    if (data_layout != DataLayout::kNHWC) {                             \
1469 1470 1471 1472 1473
      if (c_filter == -1) {                                             \
        threads.x = block_size;                                         \
        grid.x = grid_size;                                             \
        threads.y = threads.z = grid.y = grid.z = 1;                    \
      }                                                                 \
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
      KernelDepthwiseConvInputGradSp<T,                                 \
                                     c_filter_multiplier,               \
                                     c_stride,                          \
                                     c_filter,                          \
                                     DataLayout::kNCHW,                 \
                                     fuse_relu_before_conv>             \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   output_grad_data,    \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   input_grad_data);    \
    } else {                                                            \
      KernelDepthwiseConvInputGradSp<T,                                 \
                                     c_filter_multiplier,               \
                                     c_stride,                          \
                                     c_filter,                          \
                                     DataLayout::kNHWC,                 \
                                     fuse_relu_before_conv>             \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   output_grad_data,    \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   input_grad_data);    \
    }                                                                   \
    return;                                                             \
1529
  }
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
    check_case(0, 0, -1);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
1545
#undef check_case
Z
zlx 已提交
1546 1547 1548
  }
};

1549
template <typename T, bool fuse_relu_before_conv>
H
hong 已提交
1550 1551
class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                     T,
1552
                                     fuse_relu_before_conv> {
Z
zlx 已提交
1553
 public:
H
hong 已提交
1554
  void operator()(const phi::GPUContext& context,
1555 1556
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& output_grad,
X
xzl 已提交
1557 1558
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
1559
                  const std::vector<int>& dilations,
1560
                  phi::DenseTensor* filter_grad,
1561
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1562
    const int batch_size = input.dims()[0];
1563
    const int input_channels =
1564
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1565
    const int input_height =
1566
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1567
    const int input_width =
1568
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1569
    const int output_channels =
1570
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[1]
1571 1572
                                          : output_grad.dims()[3]);
    const int output_height =
1573
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[2]
1574 1575
                                          : output_grad.dims()[1]);
    const int output_width =
1576
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[3]
1577
                                          : output_grad.dims()[2]);
1578 1579
    const int ksize_height = filter_grad->dims()[2];
    const int ksize_width = filter_grad->dims()[3];
Z
zlx 已提交
1580 1581 1582 1583
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1584 1585
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1586 1587 1588

    const T* input_data = input.data<T>();
    const T* output_grad_data = output_grad.data<T>();
1589
    T* filter_grad_data = filter_grad->mutable_data<T>(context.GetPlace());
Z
zlx 已提交
1590

1591
    int block_size = 512;
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
    int blocks;
    dim3 threads;
    dim3 grid;
    if (data_layout != DataLayout::kNHWC) {
      if (output_width > 1024 && output_width <= 2048) {
        block_size = (output_width - 1) / 2 + 1;
      } else if (output_width > 512 && output_width <= 1024) {
        block_size = output_width;
      }
      blocks = std::min(std::max(block_size / output_width, 1), output_height);
      grid = dim3(ksize_width, ksize_height, output_channels);
      threads = dim3(std::min(output_width, block_size), blocks, 1);
1604 1605 1606 1607
      if (output_height * output_width < WARP_SIZE) {
        threads = dim3(
            std::min(block_size, batch_size * output_height * output_width));
      }
1608 1609 1610 1611 1612
    } else {
      blocks = std::min(
          std::max(block_size / output_channels, 1),
          ((output_width + dilate_width - 1) / dilate_width) * dilate_width);
      grid = dim3((output_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1613 1614
                  dilate_height,
                  batch_size);
1615 1616
      threads = dim3(std::min(output_channels, block_size), blocks, 1);
    }
1617 1618
    int filter_multiplier = output_channels / input_channels;

1619 1620 1621 1622 1623 1624 1625
#define check_case(c_filter_multiplier, c_stride, c_filter)                    \
  if (c_filter_multiplier == 0 ||                                              \
      filter_multiplier == c_filter_multiplier &&                              \
          stride_height == stride_width && stride_height == c_stride &&        \
          (ksize_height == ksize_width && ksize_height == c_filter ||          \
           c_filter == -1)) {                                                  \
    if (data_layout != DataLayout::kNHWC) {                                    \
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
      KernelDepthwiseConvFilterGradSp<T,                                       \
                                      c_filter_multiplier,                     \
                                      c_stride,                                \
                                      c_filter,                                \
                                      DataLayout::kNCHW,                       \
                                      fuse_relu_before_conv>                   \
          <<<grid, threads, 0, context.stream()>>>(output_grad_data,           \
                                                   input_data,                 \
                                                   batch_size,                 \
                                                   output_channels,            \
                                                   output_height,              \
                                                   output_width,               \
                                                   input_channels,             \
                                                   input_height,               \
                                                   input_width,                \
                                                   filter_multiplier,          \
                                                   ksize_height,               \
                                                   ksize_width,                \
                                                   stride_height,              \
                                                   stride_width,               \
                                                   padding_height,             \
                                                   padding_width,              \
                                                   dilate_height,              \
                                                   dilate_width,               \
                                                   filter_grad_data);          \
1651
    } else {                                                                   \
1652
      phi::DenseTensor filter_grad_hwc;                                        \
1653
      if (c_filter != -1) {                                                    \
H
hong 已提交
1654 1655 1656 1657
        framework::DDim filter_grad_hwc_dims({filter_grad->dims()[2],          \
                                              filter_grad->dims()[3],          \
                                              filter_grad->dims()[0],          \
                                              filter_grad->dims()[1]});        \
1658 1659
        filter_grad_hwc.Resize(filter_grad_hwc_dims);                          \
        filter_grad_hwc.mutable_data<T>(context.GetPlace());                   \
H
hong 已提交
1660
        phi::funcs::SetConstant<phi::GPUContext, T> set_zero;                  \
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        set_zero(context, &filter_grad_hwc, static_cast<T>(0));                \
        filter_grad_data = filter_grad_hwc.data<T>();                          \
      } else {                                                                 \
        block_size = 512;                                                      \
        if (output_channels > 1024 && output_channels <= 2048) {               \
          block_size = (output_channels - 1) / 2 + 1;                          \
        } else if (output_channels > 512 && output_channels <= 1024) {         \
          block_size = output_channels;                                        \
        }                                                                      \
        blocks =                                                               \
            std::min(std::max(block_size / output_channels, 1), output_width); \
        grid = dim3(ksize_width * ksize_height, output_height, batch_size);    \
        threads = dim3(std::min(output_channels, block_size), blocks, 1);      \
      }                                                                        \
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
      KernelDepthwiseConvFilterGradSp<T,                                       \
                                      c_filter_multiplier,                     \
                                      c_stride,                                \
                                      c_filter,                                \
                                      DataLayout::kNHWC,                       \
                                      fuse_relu_before_conv>                   \
          <<<grid, threads, 0, context.stream()>>>(output_grad_data,           \
                                                   input_data,                 \
                                                   batch_size,                 \
                                                   output_channels,            \
                                                   output_height,              \
                                                   output_width,               \
                                                   input_channels,             \
                                                   input_height,               \
                                                   input_width,                \
                                                   filter_multiplier,          \
                                                   ksize_height,               \
                                                   ksize_width,                \
                                                   stride_height,              \
                                                   stride_width,               \
                                                   padding_height,             \
                                                   padding_width,              \
                                                   dilate_height,              \
                                                   dilate_width,               \
                                                   filter_grad_data);          \
1700 1701
      if (c_filter != -1) {                                                    \
        std::vector<int> perm_axis({2, 3, 0, 1});                              \
H
hong 已提交
1702
        phi::funcs::TransposeNormal<phi::GPUContext, T> trans;                 \
1703 1704 1705 1706
        trans(context, filter_grad_hwc, filter_grad, perm_axis);               \
      }                                                                        \
    }                                                                          \
    return;                                                                    \
1707
  }
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
    check_case(0, 0, -1);
1721
#undef check_case
Z
zlx 已提交
1722 1723 1724
  }
};

H
hong 已提交
1725 1726
template class DepthwiseConvFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvFunctor<phi::GPUContext, double, false>;
1727
template class DepthwiseConvFunctor<phi::GPUContext, platform::float16, false>;
Z
zlx 已提交
1728

H
hong 已提交
1729 1730
template class DepthwiseConvInputGradFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvInputGradFunctor<phi::GPUContext, double, false>;
1731 1732 1733
template class DepthwiseConvInputGradFunctor<phi::GPUContext,
                                             platform::float16,
                                             false>;
1734

H
hong 已提交
1735 1736
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, double, false>;
1737 1738 1739
template class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                              platform::float16,
                                              false>;
1740

H
hong 已提交
1741 1742
template class DepthwiseConvFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvFunctor<phi::GPUContext, double, true>;
1743
template class DepthwiseConvFunctor<phi::GPUContext, platform::float16, true>;
1744

H
hong 已提交
1745 1746
template class DepthwiseConvInputGradFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvInputGradFunctor<phi::GPUContext, double, true>;
1747 1748 1749
template class DepthwiseConvInputGradFunctor<phi::GPUContext,
                                             platform::float16,
                                             true>;
1750

H
hong 已提交
1751 1752
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, double, true>;
1753 1754 1755
template class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                              platform::float16,
                                              true>;
Z
zlx 已提交
1756 1757 1758 1759

}  // namespace math
}  // namespace operators
}  // namespace paddle