yolo_box_op.h 5.1 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct Box {
  T x, y, w, h;
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
33 34 35 36
HOSTDEVICE inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                    int j, int an_idx, int grid_size,
                                    int input_size, int index, int stride,
                                    int img_height, int img_width) {
D
dengkaipeng 已提交
37
  Box<T> b;
38 39 40 41 42 43
  b.x = (i + sigmoid<T>(x[index])) * img_width / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) * img_height / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] * img_width /
        input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] * img_height /
        input_size;
D
dengkaipeng 已提交
44 45 46
  return b;
}

D
dengkaipeng 已提交
47 48 49
HOSTDEVICE inline int GetEntryIndex(int batch, int an_idx, int hw_idx,
                                    int an_num, int an_stride, int stride,
                                    int entry) {
D
dengkaipeng 已提交
50 51 52 53
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
D
dengkaipeng 已提交
54 55
HOSTDEVICE inline void CalcDetectionBox(T* boxes, Box<T> pred,
                                        const int box_idx) {
D
dengkaipeng 已提交
56 57 58 59 60 61 62
  boxes[box_idx] = pred.x - pred.w / 2;
  boxes[box_idx + 1] = pred.y - pred.h / 2;
  boxes[box_idx + 2] = pred.x + pred.w / 2;
  boxes[box_idx + 3] = pred.y + pred.h / 2;
}

template <typename T>
D
dengkaipeng 已提交
63 64 65 66
HOSTDEVICE inline void CalcLabelScore(T* scores, const T* input,
                                      const int label_idx, const int score_idx,
                                      const int class_num, const T conf,
                                      const int stride) {
D
dengkaipeng 已提交
67 68 69 70 71 72 73 74 75 76
  for (int i = 0; i < class_num; i++) {
    scores[score_idx + i] = conf * sigmoid<T>(input[label_idx + i * stride]);
  }
}

template <typename T>
class YoloBoxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
77
    auto* imgsize = ctx.Input<Tensor>("ImgSize");
D
dengkaipeng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto* boxes = ctx.Output<Tensor>("Boxes");
    auto* scores = ctx.Output<Tensor>("Scores");
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float conf_thresh = ctx.Attr<float>("conf_thresh");
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int box_num = boxes->dims()[1];
    const int an_num = anchors.size() / 2;
    int input_size = downsample_ratio * h;

    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

    const T* input_data = input->data<T>();
96
    const int* imgsize_data = imgsize->data<int>();
D
dengkaipeng 已提交
97 98 99 100 101 102 103
    T* boxes_data = boxes->mutable_data<T>({n, box_num, 4}, ctx.GetPlace());
    memset(boxes_data, 0, boxes->numel() * sizeof(T));
    T* scores_data =
        scores->mutable_data<T>({n, box_num, class_num}, ctx.GetPlace());
    memset(scores_data, 0, scores->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
104 105 106
      int img_height = imgsize_data[2 * i];
      int img_width = imgsize_data[2 * i + 1];

D
dengkaipeng 已提交
107 108 109 110 111 112 113 114 115 116 117 118
      for (int j = 0; j < an_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
            int obj_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 4);
            T conf = sigmoid<T>(input_data[obj_idx]);
            if (conf < conf_thresh) {
              continue;
            }

            int box_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 0);
119
            Box<T> pred =
D
dengkaipeng 已提交
120 121
                GetYoloBox<T>(input_data, anchors, l, k, j, h, input_size,
                              box_idx, stride, img_height, img_width);
D
dengkaipeng 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
            box_idx = (i * box_num + j * stride + k * w + l) * 4;
            CalcDetectionBox<T>(boxes_data, pred, box_idx);

            int label_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 5);
            int score_idx = (i * box_num + j * stride + k * w + l) * class_num;
            CalcLabelScore<T>(scores_data, input_data, label_idx, score_idx,
                              class_num, conf, stride);
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle