target_assign_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/target_assign_op.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class TargetAssignOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of TargetAssignOp should not be null");
27 28
    PADDLE_ENFORCE(ctx->HasInput("MatchIndices"),
                   "Input(MatchIndices) of TargetAssignOp should not be null");
29 30 31 32 33 34 35

    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of TargetAssignOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("OutWeight"),
                   "Output(OutWeight) of TargetAssignOp should not be null.");

    auto in_dims = ctx->GetInputDim("X");
36 37
    auto mi_dims = ctx->GetInputDim("MatchIndices");

38 39
    PADDLE_ENFORCE_EQ(in_dims.size(), 3, "The rank of Input(X) must be 3.");
    PADDLE_ENFORCE_EQ(mi_dims.size(), 2,
40
                      "The rank of Input(MatchIndices) must be 2.");
41 42 43 44 45 46 47 48

    if (ctx->HasInput("NegIndices")) {
      auto neg_dims = ctx->GetInputDim("NegIndices");
      PADDLE_ENFORCE_EQ(neg_dims.size(), 2,
                        "The rank of Input(NegIndices) must be 2.");
      PADDLE_ENFORCE_EQ(neg_dims[1], 1,
                        "The last dimenstion of Out(NegIndices) must be 1.");
    }
49 50

    auto n = mi_dims[0];
51 52 53 54
    auto m = mi_dims[1];
    auto k = in_dims[in_dims.size() - 1];
    ctx->SetOutputDim("Out", {n, m, k});
    ctx->SetOutputDim("OutWeight", {n, m, 1});
55 56 57 58 59 60
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
61
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
62 63 64 65 66 67
        ctx.device_context());
  }
};

class TargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
68
  void Make() override {
69 70 71 72
    AddInput("X",
             "(LoDTensor), This input is a 3D LoDTensor with shape [M, P, K]. "
             "Some elements in X will be assigned to Out based on the "
             "MatchIndices and NegIndices.");
73
    AddInput("MatchIndices",
D
dangqingqing 已提交
74
             "(Tensor, default Tensor<int>), The input matched indices "
75 76
             "with shape [N, P], If MatchIndices[i][j] is -1, the j-th entity "
             "of column is not matched to any entity of row in i-th instance.");
77 78
    AddInput("NegIndices",
             "(LoDTensor, default LoDTensor<int>), The input negative example "
79 80 81 82 83 84
             "indices are an optional input with shape [Neg, 1], where Neg is "
             "the total number of negative example indices.")
        .AsDispensable();
    AddAttr<int>("mismatch_value",
                 "(int, default 0), Fill this value to the "
                 "mismatched location.")
85
        .SetDefault(0);
86 87 88 89 90 91 92
    AddOutput("Out",
              "(Tensor), The output is a 3D Tensor with shape [N, P, K], "
              "N and P is the same as they are in NegIndices, K is the "
              "same as it in input of X. If MatchIndices[i][j] "
              "is -1, the Out[i][j][0 : K] is the mismatch_value.");
    AddOutput("OutWeight",
              "(Tensor), The weight for output with the shape of [N, P, 1]");
93
    AddComment(R"DOC(
94 95 96 97 98 99 100 101 102
This operator can be, for given the target bounding boxes or labels,
to assign classification and regression targets to each prediction as well as
weights to prediction. The weights is used to specify which prediction would
not contribute to training loss.

For each instance, the output `Out` and`OutWeight` are assigned based on
`MatchIndices` and `NegIndices`.
Assumed that the row offset for each instance in `X` is called lod,
this operator assigns classification/regression targets by performing the
D
dangqingqing 已提交
103 104 105 106 107 108
following steps:

1. Assigning all outpts based on `MatchIndices`:

If id = MatchIndices[i][j] > 0,

109 110
    Out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
    OutWeight[i][j] = 1.
D
dangqingqing 已提交
111 112 113

Otherwise, 

114 115
    Out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
    OutWeight[i][j] = 0.
D
dangqingqing 已提交
116

117
2. Assigning OutWeight based on `NegIndices` if `NegIndices` is provided:
D
dangqingqing 已提交
118

119 120
Assumed that the row offset for each instance in `NegIndices` is called neg_lod,
for i-th instance and each `id` of NegIndices in this instance:
D
dangqingqing 已提交
121

122 123
    Out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
    OutWeight[i][id] = 1.0
124 125 126 127 128

    )DOC");
  }
};

129 130
template <typename T, typename WT>
struct NegTargetAssignFunctor<platform::CPUDeviceContext, T, WT> {
131
  void operator()(const platform::CPUDeviceContext& ctx, const int* neg_indices,
132 133 134
                  const size_t* lod, const int N, const int M, const int K,
                  const int mismatch_value, T* out, WT* out_wt) {
    for (int i = 0; i < N; ++i) {
D
dangqingqing 已提交
135
      for (size_t j = lod[i]; j < lod[i + 1]; ++j) {
136
        int id = neg_indices[j];
137 138 139 140 141
        int off = (i * M + id) * K;
        for (int k = 0; k < K; ++k) {
          out[off + k] = mismatch_value;
          out_wt[off + k] = static_cast<WT>(1.0);
        }
142 143 144 145 146
      }
    }
  }
};

147 148 149
template struct NegTargetAssignFunctor<platform::CPUDeviceContext, int, float>;
template struct NegTargetAssignFunctor<platform::CPUDeviceContext, float,
                                       float>;
150 151 152 153 154

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
155 156
REGISTER_OPERATOR(target_assign, ops::TargetAssignOp, ops::TargetAssignOpMaker,
                  paddle::framework::EmptyGradOpMaker);
157 158
REGISTER_OP_CPU_KERNEL(
    target_assign,
159 160
    ops::TargetAssignKernel<paddle::platform::CPUDeviceContext, int, float>,
    ops::TargetAssignKernel<paddle::platform::CPUDeviceContext, float, float>);