p_norm_op.cu 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include "cub/cub.cuh"
#include "paddle/fluid/operators/p_norm_op.h"

namespace paddle {
namespace operators {

template <typename T>
__device__ __forceinline__ int sgn(T val) {
  return (T(0) < val) - (val < T(0));
}

__device__ __forceinline__ float inline_abs(float x) { return abs(x); }
__device__ __forceinline__ double inline_abs(double x) { return abs(x); }

__device__ __forceinline__ int inline_sign(float x) { return sgn<float>(x); }
__device__ __forceinline__ int inline_sign(double x) { return sgn<double>(x); }

__device__ __forceinline__ float inline_pow(float base, float exponent) {
  return pow(base, exponent);
}
__device__ __forceinline__ double inline_pow(double base, double exponent) {
  return pow(base, exponent);
}

template <typename T, int BlockDim>
__global__ void Pnorm(const T* x, const int pre,
                      const int axis_n,  // dim in axis
                      const int post, float porder, T* out_norm) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    int base = (i / post) * post * axis_n + (i % post);

    T sum = 0.0;
    __shared__ T norm;
    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      const T x_ij = x[base + j * post];
      sum += inline_pow(inline_abs(x_ij), porder);
    }
    T reduce_result = BlockReduce(temp_storage).Sum(sum);

    if (threadIdx.x == 0) {
      norm = inline_pow(reduce_result, 1.0f / porder);
      out_norm[i] = norm;
    }
    __syncthreads();
  }
}

template <typename DeviceContext, typename T>
class PnormCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* out_norm = ctx.Output<framework::Tensor>("Out");
    const T* x = in_x->data<T>();
    T* norm = out_norm->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    auto ndim = out_norm->dims();
    float porder = ctx.Attr<float>("porder");
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
    GetDims(xdim, axis, &pre, &n, &post);

    auto& dev_ctx = ctx.cuda_device_context();

    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid = std::min(max_blocks, pre * post);
    Pnorm<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n, post,
                                                          porder, norm);
  }
};

template <typename T, int BlockDim>
__global__ void PnormGradient(const T* x, const T* x_norm, const T* y_grad,
                              const float porder, const int pre,
                              const int axis_n, const int post, const T eps,
                              T* x_grad) {
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage_sum;
  // dx = (x/pnorm_broadcast).pow(p-1) * norm_dy.broadcast * sign(x)
  int num = pre * post;
  for (int i = blockIdx.x; i < num; i += gridDim.x) {
    T sum = 0.0;
    __shared__ T row_sum;
    __shared__ T row_sqrt_norm;
    __shared__ T row_norm;

    auto base = (i / post) * post * axis_n + (i % post);

    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      int index = base + j * post;
      sum += x[index] * y_grad[index];
    }
    T reduce_result = BlockReduce(temp_storage_sum).Sum(sum);

    if (threadIdx.x == 0) {
      row_sum = reduce_result;
      row_sqrt_norm = x_norm[i];
      row_norm = row_sqrt_norm * row_sqrt_norm;
    }
    __syncthreads();

    const T pnorm_i = x_norm[i];
    const T yout_i = y_grad[i];

    for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
      int index = base + j * post;
      const T x_ij = inline_abs(x[index]);
      const T dy_ij = y_grad[index];
      x_grad[index] = inline_pow(x_ij, porder - 1.0f) /
                      (inline_pow(pnorm_i, porder - 1.0f) + eps) * yout_i *
                      inline_sign(x[index]);
    }
  }
}

template <typename DeviceContext, typename T, typename AttrType = T>
class PnormGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* in_norm = ctx.Input<framework::Tensor>("Out");
    auto* in_norm_dy =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    T* dx = out_dx->mutable_data<T>(ctx.GetPlace());
    const T* x = in_x->data<T>();
    const T* x_norm = in_norm->data<T>();
    const T* norm_dy = in_norm_dy->data<T>();

    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");
    T eps = static_cast<T>(ctx.Attr<float>("epsilon"));
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
    GetDims(xdim, axis, &pre, &n, &post);

    auto& dev_ctx = ctx.cuda_device_context();

    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid = std::min(max_blocks, pre * post);
    PnormGradient<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
        x, x_norm, norm_dy, porder, pre, n, post, eps, dx);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(p_norm, ops::PnormCUDAKernel<CUDA, float>,
                        ops::PnormCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(p_norm_grad, ops::PnormGradCUDAKernel<CUDA, float>,
                        ops::PnormGradCUDAKernel<CUDA, double>);