BufferArg.h 8.8 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>

#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/Matrix.h"

namespace paddle {

enum BufferType {
  TENSOR_NORMAL = 0,
  TENSOR_SEQUENCE_ID = 1,
  TENSOR_SEQUENCE_DATA = 2,
  TENSOR_SPARSE = 3
};

enum SparseDataType {
  SPARSE_NO_VALUE = 0,  // do not need value pointer, all values are 1
  SPARSE_FLOAT_VALUE = 1
};

enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 };

class BufferArg;
class SequenceArg;
class SparseMatrixArg;

43 44 45 46 47 48 49 50 51
/**
 * \brief BufferArg used as the argument type of Function.
 *
 * The arguments of the Paddle Function have four Buffer types.
 * 1. BufferArg for a dense Buffer of any dimension.
 * 2. SequenceIdArg for a Buffer of sequence start positions.
 * 3. SequenceArg for a Buffer of sequence data.
 * 4. SparseMatrixArg for a Buffer of sparse matrix.
 *
52 53 54 55 56
 * Buffer shape
 * For most buffers, the first dimension `shape()[0]` represents
 * the size of the mini-batch.
 *
 * Buffer argType
57 58 59 60 61
 * There is an ArgType property for the BufferArg used as Function Output.
 * Whether the result of the Function calculation is assigned to the
 * output Buffer or added to the output Buffer is determined by the
 * argType_ property of the output BufferArg.
 */
62 63 64 65 66 67 68 69 70

// ArgType is only used by output BufferArg.
// For input argument, argType_ is ignored.
// For output argument, need to set the argType_ of the BufferArg.
enum ArgType {
  UNSPECIFIED = 0,
  ASSIGN_TO = 1,
  ADD_TO = 2,
};
H
hedaoyuan 已提交
71
class BufferArg {
72 73 74 75 76
public:
  void setArgType(ArgType argType) { argType_ = argType; }

  ArgType getArgType() const { return argType_; }

H
hedaoyuan 已提交
77
public:
78 79 80 81 82 83 84 85
  BufferArg(ValueType valueType,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
      : buf_(nullptr),
        valueType_(valueType),
        shape_(shape),
        argType_(argType) {}

86 87 88 89 90
  BufferArg(void* buf,
            ValueType valueType,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
      : buf_(buf), valueType_(valueType), shape_(shape), argType_(argType) {}
H
hedaoyuan 已提交
91 92 93 94

  BufferArg(void* buf, ValueType valueType)
      : buf_(buf), valueType_(valueType) {}

95
  BufferArg(const Matrix& matrix, ArgType argType = UNSPECIFIED)
96 97
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
98
        valueType_(DataType<real>::value),
99 100
        shape_(2),
        argType_(argType) {
H
hedaoyuan 已提交
101 102 103 104
    shape_.setDim(0, matrix.getHeight());
    shape_.setDim(1, matrix.getWidth());
  }

105 106 107
  BufferArg(const Matrix& matrix,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
108 109
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
110
        valueType_(DataType<real>::value),
111 112
        shape_(shape),
        argType_(argType) {
H
hedaoyuan 已提交
113 114 115
    CHECK_EQ(matrix.getElementCnt(), shape.getElements());
  }

116
  BufferArg(const Vector& vector, ArgType argType = UNSPECIFIED)
117 118
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
119
        valueType_(DataType<real>::value),
120 121
        shape_(1),
        argType_(argType) {
H
hedaoyuan 已提交
122 123 124
    shape_.setDim(0, vector.getSize());
  }

125
  BufferArg(const IVector& vector, ArgType argType = UNSPECIFIED)
126 127
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
128
        valueType_(VALUE_TYPE_INT32),
129 130
        shape_(1),
        argType_(argType) {
H
hedaoyuan 已提交
131 132 133 134 135 136 137 138
    shape_.setDim(0, vector.getSize());
  }

  template <DeviceType DType>
  typename Tensor<real, DType>::Matrix matrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
139
    CHECK_EQ((size_t)2, shape_.ndims());
H
hedaoyuan 已提交
140 141 142 143 144 145 146 147 148
    return typename Tensor<real, DType>::Matrix(
        reinterpret_cast<real*>(buf_), shape_[0], shape_[1]);
  }

  template <typename VType, DeviceType DType>
  typename Tensor<VType, DType>::Vector vector() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<VType>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
149
    CHECK_EQ((size_t)1, shape_.ndims());
H
hedaoyuan 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    return typename Tensor<VType, DType>::Vector(
        shape_[0], reinterpret_cast<VType*>(buf_));
  }

  virtual ~BufferArg() {}

  template <typename T>
  T* data() const {
    return reinterpret_cast<T*>(buf_);
  }

  void* data() const { return buf_; }
  ValueType valueType() const { return valueType_; }
  BufferType bufferType() const { return bufferType_; }
  const TensorShape& shape() const { return shape_; }

  const SequenceArg& sequence() const;
  const SparseMatrixArg& sparse() const;

protected:
  void* buf_;
  ValueType valueType_;
  TensorShape shape_;
  BufferType bufferType_;
174
  ArgType argType_ = UNSPECIFIED;
H
hedaoyuan 已提交
175 176 177 178 179 180 181
  // leading dimensions. The size is dims_.size()
  // Dims lds_;
};

// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
H
hedaoyuan 已提交
182
// if a < b then value_.buf_[a] < value_.buf_[b]
H
hedaoyuan 已提交
183 184
class SequenceIdArg : public BufferArg {
public:
185 186 187 188 189 190
  SequenceIdArg(const TensorShape& shape, ArgType argType = UNSPECIFIED)
      : BufferArg(VALUE_TYPE_INT32, shape, argType) {
    CHECK_EQ(shape_.ndims(), (size_t)1);
    numSeqs_ = shape_[0] - 1;
  }

191 192 193 194
  SequenceIdArg(void* buf,
                const TensorShape& shape,
                ArgType argType = UNSPECIFIED)
      : BufferArg(buf, VALUE_TYPE_INT32, shape, argType) {
H
hedaoyuan 已提交
195
    CHECK_EQ(shape_.ndims(), (size_t)1);
H
hedaoyuan 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    numSeqs_ = shape_[0] - 1;
  }

  SequenceIdArg(const IVector& vector) : BufferArg(vector) {
    numSeqs_ = shape_[0] - 1;
  }

  ~SequenceIdArg() {}

  size_t numSeqs() const { return numSeqs_; }

private:
  size_t numSeqs_;
};

211 212 213 214 215
// sequences data
// For mini-batch calculate,
// one batch can contain more than one sequence of data.
// SequenceArg can be used to represent sequences that contain multiple
// unequal lengths.
H
hedaoyuan 已提交
216 217
class SequenceArg : public BufferArg {
public:
218 219 220 221 222
  SequenceArg(ValueType valueType,
              const TensorShape& shape,
              ArgType argType = UNSPECIFIED)
      : BufferArg(valueType, shape, argType), startPositions_(TensorShape()) {}

H
hedaoyuan 已提交
223 224 225
  SequenceArg(void* buf,
              ValueType valueType,
              const TensorShape& shape,
226 227 228 229
              const SequenceIdArg& startPositions,
              ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
        startPositions_(startPositions) {}
H
hedaoyuan 已提交
230

231 232 233 234
  SequenceArg(const Matrix& matrix,
              const IVector& vector,
              ArgType argType = UNSPECIFIED)
      : BufferArg(matrix, argType), startPositions_(vector) {}
H
hedaoyuan 已提交
235 236 237 238 239

  ~SequenceArg() {}

  void* getIdBuf() const { return startPositions_.data(); }
  size_t numSeqs() const { return startPositions_.numSeqs(); }
240 241
  SequenceIdArg& getSequenceId() { return startPositions_; }
  const SequenceIdArg& getSequenceId() const { return startPositions_; }
H
hedaoyuan 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

private:
  SequenceIdArg startPositions_;
};

// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
  SparseMatrixArg(void* buf,
                  ValueType valueType,
                  const TensorShape& shape,
                  const BufferArg& row,
                  const BufferArg& col,
                  size_t nnz,
                  SparseDataFormat format,
259 260 261
                  SparseDataType type,
                  ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
H
hedaoyuan 已提交
262 263 264 265 266 267
        row_(row),
        col_(col),
        nnz_(nnz),
        format_(format),
        type_(type) {
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
H
hedaoyuan 已提交
268 269 270
    CHECK_EQ(shape_.ndims(), (size_t)2);
    CHECK_EQ(row_.shape().ndims(), (size_t)1);
    CHECK_EQ(col_.shape().ndims(), (size_t)1);
H
hedaoyuan 已提交
271 272 273 274 275 276 277
    if (format == SPARSE_CSR_FORMAT) {
      CHECK_EQ(nnz, col.shape()[0]);
    } else if (format == SPARSE_CSC_FORMAT) {
      CHECK_EQ(nnz, row.shape()[0]);
    }
  }

278
  SparseMatrixArg(const CpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
279

280
  SparseMatrixArg(const GpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

  ~SparseMatrixArg() {}

  void* getRowBuf() const { return row_.data(); }

  void* getColBuf() const { return col_.data(); }

  size_t nnz() const { return nnz_; }

  SparseDataFormat dataFormat() const { return format_; }

  SparseDataType dataType() const { return type_; }

private:
  BufferArg row_;
  BufferArg col_;
  size_t nnz_;
  SparseDataFormat format_;
  SparseDataType type_;
};

}  // namespace paddle