test_sequence_mask.py 5.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19
import sys
import unittest

import numpy as np

S
sneaxiy 已提交
20
import paddle.fluid as fluid
21 22
from paddle.fluid.framework import (
    Program,
23
    convert_np_dtype_to_dtype_,
24 25
    program_guard,
)
26

27 28
sys.path.append("../")
from op_test import OpTest
Q
qingqing01 已提交
29 30 31 32 33


class SequenceMaskTestBase(OpTest):
    def initDefaultParameters(self):
        self.op_type = 'sequence_mask'
S
sneaxiy 已提交
34
        self.maxlen = 10
Q
qingqing01 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        self.mask_dtype = 'int64'
        self.x = [[0, 3, 4], [5, 7, 9]]

    def initParameters(self):
        pass

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        if not isinstance(self.x, np.ndarray):
            self.x = np.array(self.x)

        self.inputs = {'X': self.x}
        self.outputs = {'Y': self.calc_ground_truth_mask()}
        self.attrs = {
S
sneaxiy 已提交
50
            'maxlen': self.maxlen,
51
            'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype),
Q
qingqing01 已提交
52 53 54
        }

    def calc_ground_truth_mask(self):
S
sneaxiy 已提交
55
        maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
56 57 58 59 60 61 62 63
        shape = self.x.shape + (maxlen,)
        index_broadcast = np.broadcast_to(
            np.reshape(range(maxlen), newshape=[1] * self.x.ndim + [-1]),
            shape=shape,
        )
        x_broadcast = np.broadcast_to(
            np.reshape(self.x, newshape=self.x.shape + (-1,)), shape=shape
        )
Q
qingqing01 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        return (index_broadcast < x_broadcast).astype(self.mask_dtype)

    def test_check_output(self):
        self.check_output()


class SequenceMaskTest1(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'bool'


class SequenceMaskTest2(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'uint8'


class SequenceMaskTest3(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'int32'


class SequenceMaskTest4(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'float32'


class SequenceMaskTest5(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'float64'


S
sneaxiy 已提交
95 96 97 98 99
class SequenceMaskTest6(SequenceMaskTestBase):
    def initParameters(self):
        self.maxlen = -1


100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class SequenceMaskTestBase_tensor_attr(OpTest):
    def initDefaultParameters(self):
        self.op_type = 'sequence_mask'
        self.maxlen = 10
        self.maxlen_tensor = np.ones((1), 'int32') * 10
        self.mask_dtype = 'int64'
        self.x = [[0, 3, 4], [5, 7, 9]]

    def initParameters(self):
        pass

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        if not isinstance(self.x, np.ndarray):
            self.x = np.array(self.x)

        self.inputs = {'X': self.x, 'MaxLenTensor': self.maxlen_tensor}
        self.outputs = {'Y': self.calc_ground_truth_mask()}
        self.attrs = {'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype)}

    def calc_ground_truth_mask(self):
        maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
123 124 125 126 127 128 129 130
        shape = self.x.shape + (maxlen,)
        index_broadcast = np.broadcast_to(
            np.reshape(range(maxlen), newshape=[1] * self.x.ndim + [-1]),
            shape=shape,
        )
        x_broadcast = np.broadcast_to(
            np.reshape(self.x, newshape=self.x.shape + (-1,)), shape=shape
        )
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        return (index_broadcast < x_broadcast).astype(self.mask_dtype)

    def test_check_output(self):
        self.check_output()


class SequenceMaskTest1_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'bool'


class SequenceMaskTest2_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'uint8'


class SequenceMaskTest3_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'int32'


class SequenceMaskTest4_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'float32'


class SequenceMaskTest5_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'float64'


162 163 164 165 166 167 168 169 170 171 172 173
class TestSequenceMaskOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.uniform(1, 5, [4]).astype("float32")

            def test_Variable():
                # the input must be Variable
                fluid.layers.sequence_mask(input_data, maxlen=4)

            self.assertRaises(TypeError, test_Variable)


Q
qingqing01 已提交
174 175
if __name__ == '__main__':
    unittest.main()