layer_norm_op_npu.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/layer_norm_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

template <typename T>
class LayerNormNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    const auto epsilon = ctx.Attr<float>("epsilon");
    const auto* x = ctx.Input<Tensor>("X");
    const auto* scale = ctx.Input<Tensor>("Scale");
    const auto* bias = ctx.Input<Tensor>("Bias");
    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* variance = ctx.Output<Tensor>("Variance");
    const auto& x_dims = x->dims();
    std::vector<int> axes;
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int right = static_cast<int>(matrix_dim[1]);

    // The shape of scale and bias should be equal to x.shape[begin_norm_axis:],
    // required by Ascend.
    for (auto i = begin_norm_axis; i < x_dims.size(); ++i) {
      axes.push_back(x_dims[i]);
    }
    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    Tensor default_scale(x->type());
    if (!scale) {
      default_scale.mutable_data<T>(framework::make_ddim(axes), place);
      Tensor value(x->type());
      value.mutable_data<T>({1}, place);
      TensorFromVector(std::vector<T>{static_cast<T>(1.0)},
                       ctx.device_context(), &value);
      auto runner =
          NpuOpRunner("FillD", {value}, {default_scale}, {{"dims", axes}});
      runner.Run(stream);
      scale = &default_scale;
    } else {
      const_cast<Tensor*>(scale)->Resize(framework::make_ddim(axes));
    }

    Tensor default_bias(x->type());
    if (!bias) {
      default_bias.mutable_data<T>(framework::make_ddim(axes), place);
      Tensor value(x->type());
      value.mutable_data<T>({1}, place);
      TensorFromVector(std::vector<T>{static_cast<T>(0)}, ctx.device_context(),
                       &value);
      auto runner =
          NpuOpRunner("FillD", {value}, {default_bias}, {{"dims", axes}});
      runner.Run(stream);
      bias = &default_bias;
    } else {
      const_cast<Tensor*>(bias)->Resize(framework::make_ddim(axes));
    }
    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    variance->mutable_data<T>(ctx.GetPlace());

    auto runner =
        NpuOpRunner("LayerNorm", {*x, *scale, *bias}, {*y, *mean, *variance},
                    {{"begin_norm_axis", begin_norm_axis},
                     {"begin_params_axis", begin_norm_axis},
                     {"epsilon", epsilon}});
    runner.Run(stream);
    // revert shape of scale and bias
    // TODO(zhiqiu): better implementation, use tmp tensor to avoid write input
    // tensor.
    const_cast<Tensor*>(scale)->Resize(framework::make_ddim({right}));
    const_cast<Tensor*>(bias)->Resize(framework::make_ddim({right}));
  }
};

template <typename T>
class LayerNormGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    const auto* x = ctx.Input<Tensor>("X");
    const auto& x_dims = x->dims();
    const auto* mean = ctx.Input<Tensor>("Mean");
    const auto* variance = ctx.Input<Tensor>("Variance");
    const auto* scale = ctx.Input<Tensor>("Scale");
    const auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dscale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* dbias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int right = static_cast<int>(matrix_dim[1]);

    std::vector<int> axes;
    for (auto i = begin_norm_axis; i < x_dims.size(); ++i) {
      axes.push_back(x_dims[i]);
    }

    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    // No need to compute any gradient, jusr return
    if (!dx && !dscale && !dbias) {
      return;
    }

    // The rank of mean should be equal to x, required by Ascend.
    std::vector<int> new_shape;
    for (auto i = 0; i < begin_norm_axis; ++i) {
      new_shape.push_back(x_dims[i]);
    }
    for (auto i = begin_norm_axis; i < x_dims.size(); ++i) {
      new_shape.push_back(1);
    }

    auto mean_dims = mean->dims();
    const_cast<Tensor*>(mean)->Resize(framework::make_ddim({new_shape}));
    const_cast<Tensor*>(variance)->Resize(framework::make_ddim({new_shape}));

    Tensor default_scale(x->type());
    if (!scale) {
      default_scale.mutable_data<T>(framework::make_ddim(axes), place);
      Tensor value(x->type());
      value.mutable_data<T>({1}, place);
      TensorFromVector(std::vector<T>{static_cast<T>(1.0)},
                       ctx.device_context(), &value);
      auto runner =
          NpuOpRunner("FillD", {value}, {default_scale}, {{"dims", axes}});
      runner.Run(stream);
      scale = &default_scale;
    } else {
      const_cast<Tensor*>(scale)->Resize(framework::make_ddim(axes));
    }

    Tensor dx_(dy->type()), dscale_(dy->type()), dbias_(dy->type());
    dx = (dx == nullptr) ? &dx_ : dx;
    dscale = (dscale == nullptr) ? &dscale_ : dscale;
    dbias = (dbias == nullptr) ? &dbias_ : dbias;

    dscale->Resize(framework::make_ddim(axes));
    dscale->mutable_data<T>(ctx.GetPlace());

    dbias->Resize(framework::make_ddim(axes));
    dbias->mutable_data<T>(ctx.GetPlace());

    dx->Resize(x->dims());
    dx->mutable_data<T>(ctx.GetPlace());

    auto runner =
        NpuOpRunner("LayerNormGrad", {*dy, *x, *variance, *mean, *scale},
                    {*dx, *dscale, *dbias}, {});
    runner.Run(stream);

    const_cast<Tensor*>(mean)->Resize(mean_dims);
    const_cast<Tensor*>(variance)->Resize(mean_dims);
    const_cast<Tensor*>(scale)->Resize(framework::make_ddim({right}));
    dscale->Resize(framework::make_ddim({right}));
    dbias->Resize(framework::make_ddim({right}));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(layer_norm, ops::LayerNormNPUKernel<float>,
                       ops::LayerNormNPUKernel<plat::float16>);
REGISTER_OP_NPU_KERNEL(layer_norm_grad, ops::LayerNormGradNPUKernel<float>,
                       ops::LayerNormGradNPUKernel<plat::float16>);