analyzer_rnn1_tester.cc 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
16

17 18
DEFINE_bool(with_precision_check, true, "turn on test");

19 20 21 22 23 24 25 26 27 28 29
namespace paddle {
namespace inference {

using namespace framework;  // NOLINT

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
T
Tao Luo 已提交
30
  size_t num_samples;  // total number of samples
31 32 33
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
34

35 36 37 38
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
T
Tao Luo 已提交
105
    num_samples = num_lines;
106 107
  }
};
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
  // clang-format off
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
  week_tensor.lod.assign({one_batch.lod3});
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
  minute_tensor.lod.assign({one_batch.lod3});
  // clang-format on
  // assign data
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor,
                           ZeroCopyTensor *cell_init_tensor,
                           ZeroCopyTensor *data_tensor,
                           ZeroCopyTensor *hidden_init_tensor,
                           ZeroCopyTensor *week_tensor,
                           ZeroCopyTensor *minute_tensor,
                           DataRecord *data_record, int batch_size) {
  auto one_batch = data_record->NextBatch();
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor->Reshape({1, 2});
  lod_attention_tensor->SetLoD({one_batch.lod1, one_batch.lod2});

  cell_init_tensor->Reshape({batch_size, 15});
  cell_init_tensor->SetLoD({one_batch.lod3});

  hidden_init_tensor->Reshape({batch_size, 15});
  hidden_init_tensor->SetLoD({one_batch.lod3});

  data_tensor->Reshape(rnn_link_data_shape);
  data_tensor->SetLoD({one_batch.lod1});

  week_tensor->Reshape(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
  week_tensor->SetLoD({one_batch.lod3});

  minute_tensor->Reshape(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
  minute_tensor->SetLoD({one_batch.lod3});

  // assign data
  float arr0[] = {0, 0};
  std::vector<float> zeros(batch_size * 15, 0);
  std::copy_n(arr0, 2,
              lod_attention_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(arr0, 2, data_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(zeros.begin(), zeros.size(),
              cell_init_tensor->mutable_data<float>(PaddlePlace::kCPU));
  std::copy_n(zeros.begin(), zeros.size(),
              hidden_init_tensor->mutable_data<float>(PaddlePlace::kCPU));
  ZeroCopyTensorAssignData(data_tensor, one_batch.rnn_link_data);
  ZeroCopyTensorAssignData(week_tensor, one_batch.rnn_week_datas);
  ZeroCopyTensorAssignData(minute_tensor, one_batch.rnn_minute_datas);
}

void SetConfig(AnalysisConfig *cfg) {
206 207 208 209
  cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
T
Tao Luo 已提交
210
}
211

T
Tao Luo 已提交
212 213
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
214
  std::vector<PaddleTensor> input_slots;
T
Tao Luo 已提交
215 216 217 218 219 220 221
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}
222

T
Tao Luo 已提交
223 224
// Easy for profiling independently.
TEST(Analyzer_rnn1, profile) {
225
  AnalysisConfig cfg;
T
Tao Luo 已提交
226
  SetConfig(&cfg);
227 228
  cfg.DisableGpu();
  cfg.SwitchIrDebug();
T
Tao Luo 已提交
229
  std::vector<PaddleTensor> outputs;
230

L
luotao1 已提交
231
  std::vector<std::vector<PaddleTensor>> input_slots_all;
T
Tao Luo 已提交
232
  SetInput(&input_slots_all);
233 234
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
T
Tao Luo 已提交
235
}
236

T
Tao Luo 已提交
237 238
// Check the fuse status
TEST(Analyzer_rnn1, fuse_statis) {
239
  AnalysisConfig cfg;
T
Tao Luo 已提交
240
  SetConfig(&cfg);
241

T
Tao Luo 已提交
242
  int num_ops;
243 244 245
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
T
Tao Luo 已提交
246 247 248 249 250 251 252
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
  EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2);  // bi-directional LSTM
  EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
  EXPECT_EQ(num_ops,
            13);  // After graph optimization, only 13 operators exists.
}
253

T
Tao Luo 已提交
254 255
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_rnn1, compare) {
256
  AnalysisConfig cfg;
T
Tao Luo 已提交
257 258 259 260
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
261 262
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
263 264
}

L
luotao1 已提交
265 266 267 268 269 270 271 272 273 274 275
// Compare Deterministic result
TEST(Analyzer_rnn1, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

T
Tao Luo 已提交
276 277
// Test Multi-Thread.
TEST(Analyzer_rnn1, multi_thread) {
278
  AnalysisConfig cfg;
T
Tao Luo 已提交
279 280
  SetConfig(&cfg);
  std::vector<PaddleTensor> outputs;
281

T
Tao Luo 已提交
282 283
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
284
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
285
                 input_slots_all, &outputs, 2 /* multi_thread */);
286 287 288 289 290 291 292
}

// Validate that the AnalysisPredictor + ZeroCopyTensor really works by testing
// on the complex RNN1 model.
TEST(Analyzer_rnn1, ZeroCopy) {
  AnalysisConfig config;
  SetConfig(&config);
293
  config.SwitchUseFeedFetchOps(false);
294 295 296

  PaddlePlace place;

S
superjomn 已提交
297
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
298

299 300 301
  config.SwitchUseFeedFetchOps(true);
  auto native_predictor =
      CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
302

303 304
  config.SwitchUseFeedFetchOps(
      true);  // the analysis predictor needs feed/fetch.
S
superjomn 已提交
305
  auto analysis_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

#define NEW_TENSOR(name__) \
  auto name__##_tensor = predictor->GetInputTensor(#name__);
  NEW_TENSOR(data_lod_attention);
  NEW_TENSOR(cell_init);
  NEW_TENSOR(data);
  NEW_TENSOR(week);
  NEW_TENSOR(minute);
  NEW_TENSOR(hidden_init);

  // Prepare data for AnalysisPredictor
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  PrepareZeroCopyInputs(data_lod_attention_tensor.get(), cell_init_tensor.get(),
                        data_tensor.get(), hidden_init_tensor.get(),
                        week_tensor.get(), minute_tensor.get(), &data,
                        FLAGS_batch_size);

  // Prepare data for NativePredictor
  std::vector<std::vector<PaddleTensor>> native_inputs;
  SetInput(&native_inputs);
  std::vector<PaddleTensor> native_outputs;
  std::vector<PaddleTensor> analysis_outputs;

  auto output_tensor = predictor->GetOutputTensor("final_output.tmp_1");
  // Run analysis predictor

  int num_ops;
  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 1);
  ASSERT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2);  // bi-directional LSTM
  ASSERT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
  ASSERT_EQ(num_ops,
            13);  // After graph optimization, only 13 operators exists.

  Timer timer;
  double total_time{0};
  for (int i = 0; i < FLAGS_repeat; i++) {
    timer.tic();
    predictor->ZeroCopyRun();
    total_time += timer.toc();
  }
348
  LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor);
349

350 351
  ASSERT_TRUE(native_predictor->Run(native_inputs.front(), &native_outputs));
  LOG(INFO) << "native output " << DescribeTensor(native_outputs.front());
352

T
tensor-tang 已提交
353
  int output_size{0};  // this is the number of elements not memory size
354 355
  auto *zero_copy_data = output_tensor->data<float>(&place, &output_size);
  auto *native_data = static_cast<float *>(native_outputs.front().data.data());
T
tensor-tang 已提交
356
  for (int i = 0; i < output_size; i++) {
357
    EXPECT_NEAR(zero_copy_data[i], native_data[i], 1e-3);
358 359 360 361 362 363
  }
}

TEST(Analyzer_rnn1, ZeroCopyMultiThread) {
  AnalysisConfig config;
  SetConfig(&config);
364
  config.SwitchUseFeedFetchOps(false);
365 366 367 368 369 370 371 372 373

#define NEW_TENSOR(name__) \
  auto name__##_tensor = predictor->GetInputTensor(#name__);

  auto base_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  double total_time_of_threads{0};
  std::vector<std::thread> threads;

  for (int tid = 0; tid < FLAGS_num_threads; tid++) {
T
Tao Luo 已提交
374 375 376 377
    threads.emplace_back([&, tid] {
      // To ensure the thread binding correctly,
      // please clone inside the threadpool.
      auto predictor = base_predictor->Clone();
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
      NEW_TENSOR(data_lod_attention);
      NEW_TENSOR(cell_init);
      NEW_TENSOR(data);
      NEW_TENSOR(week);
      NEW_TENSOR(minute);
      NEW_TENSOR(hidden_init);

      // Prepare data for AnalysisPredictor
      DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
      Timer timer;
      double total_time{0};

      for (int i = 0; i < FLAGS_repeat; i++) {
        PrepareZeroCopyInputs(data_lod_attention_tensor.get(),
                              cell_init_tensor.get(), data_tensor.get(),
                              hidden_init_tensor.get(), week_tensor.get(),
                              minute_tensor.get(), &data, FLAGS_batch_size);

        timer.tic();
        predictor->ZeroCopyRun();
        total_time += timer.toc();
      }

      total_time_of_threads += total_time;

      LOG(INFO) << "thread time: " << total_time / FLAGS_repeat;
    });
  }

  for (auto &t : threads) {
    t.join();
  }

  LOG(INFO) << "average time: "
            << total_time_of_threads / FLAGS_num_threads / FLAGS_repeat;
413 414 415 416
}

}  // namespace inference
}  // namespace paddle