blas_impl.cu.h 8.6 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/dynload/cublas.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasSgemm(args...));
  }
Y
Yu Yang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasSaxpy(args...));
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasSgemv(args...));
  }

  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched(args...));
#else
    PADDLE_THROW("SgemmStridedBatched is not supported on cuda <= 7.5");
#endif
  }
Y
Yu Yang 已提交
52 53 54 55 56 57 58 59
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasDgemm(args...));
  }
Y
Yu Yang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasDaxpy(args...));
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasDgemv(args...));
  }

  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched(args...));
#else
    PADDLE_THROW("DgemmStridedBatched is not supported on cuda <= 7.5");
#endif
  }
Y
Yu Yang 已提交
79 80 81 82
};

template <>
struct CUBlas<platform::float16> {
Y
Yu Yang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96
  using float16 = platform::float16;

  static void GEMM(cublasHandle_t handle, cublasOperation_t transa,
                   cublasOperation_t transb, int m, int n, int k,
                   const float16 *alpha, const float16 *A, int lda,
                   const float16 *B, int ldb, const float16 *beta, float16 *C,
                   int ldc) {
    PADDLE_ENFORCE(
        platform::dynload::cublasHgemm(handle, transa, transb, m, n, k,
                                       reinterpret_cast<const __half *>(alpha),
                                       reinterpret_cast<const __half *>(A), lda,
                                       reinterpret_cast<const __half *>(B), ldb,
                                       reinterpret_cast<const __half *>(beta),
                                       reinterpret_cast<__half *>(C), ldc));
Y
Yu Yang 已提交
97
  }
Y
Yu Yang 已提交
98 99 100 101 102 103 104 105 106

  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
    PADDLE_ENFORCE(platform::dynload::cublasHgemmStridedBatched(args...));
#else
    PADDLE_THROW("HgemmStridedBatched is not supported on cuda <= 7.5");
#endif
  }
Y
Yu Yang 已提交
107 108 109 110
};

template <>
template <typename T>
Y
Yu Yang 已提交
111 112 113 114
void Blas<platform::CUDADeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                             CBLAS_TRANSPOSE transB, int M,
                                             int N, int K, T alpha, const T *A,
                                             const T *B, T beta, T *C) const {
Y
Yu Yang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha,
                  B, ldb, A, lda, &beta, C, N);
}

template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMM(
Y
Yu Yang 已提交
131 132 133 134
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    platform::float16 alpha, const platform::float16 *A,
    const platform::float16 *B, platform::float16 beta,
    platform::float16 *C) const {
Y
Yu Yang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(context_.GetComputeCapability(), 53,
                    "cublas fp16 gemm requires GPU compute capability >= 53");

#if CUDA_VERSION >= 8000
  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

  cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
  if (context_.GetComputeCapability() >= 70) {
    PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(
        context_.cublas_handle(), CUBLAS_TENSOR_OP_MATH));
    algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
  } else {
    PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(
        context_.cublas_handle(), CUBLAS_DEFAULT_MATH));
  }
#endif  // CUDA_VERSION >= 9000

  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
  PADDLE_ENFORCE(platform::dynload::cublasGemmEx(
      context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B,
      CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N,
      CUDA_R_32F, algo));
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
Y
Yu Yang 已提交
174 175 176
  CUBlas<platform::float16>::GEMM(context_.cublas_handle(), cuTransB, cuTransA,
                                  N, M, K, &h_alpha, h_B, ldb, h_A, lda,
                                  &h_beta, h_C, N);
Y
Yu Yang 已提交
177 178 179 180 181
#endif  // CUDA_VERSION >= 8000
}

template <>
template <typename T>
Y
Yu Yang 已提交
182 183 184 185
void Blas<platform::CUDADeviceContext>::GEMM(bool transA, bool transB, int M,
                                             int N, int K, T alpha, const T *A,
                                             int lda, const T *B, int ldb,
                                             T beta, T *C, int ldc) const {
Y
Yu Yang 已提交
186 187
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Y
Yu Yang 已提交
188 189
  cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
  cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
Y
Yu Yang 已提交
190 191 192 193
  CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha,
                  B, ldb, A, lda, &beta, C, ldc);
}

Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::AXPY(int n, T alpha, const T *x,
                                             T *y) const {
  CUBlas<T>::AXPY(context_.cublas_handle(), n, &alpha, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::GEMV(bool trans_a, int M, int N,
                                             T alpha, const T *A, const T *B,
                                             T beta, T *C) const {
  cublasOperation_t cuTransA = !trans_a ? CUBLAS_OP_T : CUBLAS_OP_N;

  CUBlas<T>::GEMV(context_.cublas_handle(), cuTransA, N, M, &alpha, A, N, B, 1,
                  &beta, C, 1);
}

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int64_t strideC = M * N;

  CUBlas<T>::GEMM_BATCH(context_.cublas_handle(), cuTransB, cuTransA, N, M, K,
                        &alpha, B, ldb, strideB, A, lda, strideA, &beta, C, ldc,
                        strideC, batchCount);
}

Y
Yu Yang 已提交
234 235 236
}  // namespace math
}  // namespace operators
}  // namespace paddle