extension.py 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the extention functions
16

L
Li Fuchen 已提交
17 18
import numpy as np
from ...fluid.data_feeder import check_dtype
19
from ...fluid.layer_helper import LayerHelper
20 21
from ...static import Variable
from ...tensor.creation import assign
22
from ...tensor.layer_function_generator import templatedoc
Z
zhiboniu 已提交
23
from paddle import in_dynamic_mode
24
from paddle import _C_ops, _legacy_C_ops
25 26
from ...fluid.framework import _non_static_mode, _in_legacy_dygraph, in_dygraph_mode
from ...fluid.data_feeder import check_variable_and_dtype, check_type
27
from ...framework import core, convert_np_dtype_to_dtype_
28

29 30
__all__ = []

31

L
Li Fuchen 已提交
32 33
def diag_embed(input, offset=0, dim1=-2, dim2=-1):
    """
34 35
    This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2)
    are filled by ``input``. By default, a 2D plane formed by the last two dimensions
L
Li Fuchen 已提交
36
    of the returned tensor will be selected.
37

L
Li Fuchen 已提交
38
    The argument ``offset`` determines which diagonal is generated:
39

L
Li Fuchen 已提交
40 41 42
    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
43

L
Li Fuchen 已提交
44
    Args:
45
        input(Tensor|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
L
Li Fuchen 已提交
46 47 48
        offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal).
        dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2.
        dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1.
49

L
Li Fuchen 已提交
50
    Returns:
51
        Tensor, the output data type is the same as input data type.
52

L
Li Fuchen 已提交
53 54
    Examples:
        .. code-block:: python
55

L
Li Fuchen 已提交
56 57
            import paddle.nn.functional as F
            import numpy as np
58

L
Li Fuchen 已提交
59
            diag_embed = np.random.randn(2, 3).astype('float32')
60 61
            # [[ 0.7545889 , -0.25074545,  0.5929117 ],
            #  [-0.6097662 , -0.01753256,  0.619769  ]]
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

            data1 = F.diag_embed(diag_embed)
            data1.numpy()
            # [[[ 0.7545889 ,  0.        ,  0.        ],
            #  [ 0.        , -0.25074545,  0.        ],
            #   [ 0.        ,  0.        ,  0.5929117 ]],

            # [[-0.6097662 ,  0.        ,  0.        ],
            #  [ 0.        , -0.01753256,  0.        ],
            #  [ 0.        ,  0.        ,  0.619769  ]]]

            data2 = F.diag_embed(diag_embed, offset=-1, dim1=0, dim2=2)
            data2.numpy()
            # [[[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [ 0.7545889 ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        , -0.25074545,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.5929117 ,  0.        ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [-0.6097662 ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        , -0.01753256,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.619769  ,  0.        ]]]

            data3 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2)
            data3.numpy()
            # [[[ 0.        ,  0.7545889 ,  0.        ,  0.        ],
            #   [ 0.        , -0.6097662 ,  0.        ,  0.        ]],
            #
            #  [[ 0.        ,  0.        , -0.25074545,  0.        ],
            #   [ 0.        ,  0.        , -0.01753256,  0.        ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.5929117 ],
            #   [ 0.        ,  0.        ,  0.        ,  0.619769  ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.        ,  0.        ]]]
L
Li Fuchen 已提交
98 99 100 101
    """
    if not isinstance(input, Variable):
        input = assign(input)

102
    if in_dygraph_mode():
103
        return _C_ops.diag_embed(input, offset, dim1, dim2)
104
    elif in_dynamic_mode():
105 106
        return _legacy_C_ops.diag_embed(input, "offset", offset, "dim1", dim1,
                                        "dim2", dim2)
107 108 109 110

    inputs = {'Input': [input]}
    attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}

L
Li Fuchen 已提交
111 112 113 114 115 116
    def __check_input(input, offset, dim1, dim2):
        check_dtype(input.dtype, 'Input',
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'diag_embed')

        input_shape = list(input.shape)
117
        assert len(input_shape) >= 1,                     \
L
Li Fuchen 已提交
118 119
                "Input must be at least 1-dimensional, "   \
                "But received Input's dimensional: %s.\n" %  \
120
                len(input_shape)
L
Li Fuchen 已提交
121

122 123 124
        assert np.abs(dim1) <= len(input_shape),    \
            "Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape) + 1), len(input_shape), dim1)
L
Li Fuchen 已提交
125

126 127 128
        assert np.abs(dim2) <= len(input_shape),      \
            "Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape) + 1), len(input_shape), dim2)
L
Li Fuchen 已提交
129 130 131

        dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1
        dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1
132
        assert dim1_ != dim2_,       \
L
Li Fuchen 已提交
133
               "dim1 and dim2 cannot be the same dimension." \
134
                "But received dim1 = %d, dim2 = %d\n"%(dim1, dim2)
L
Li Fuchen 已提交
135

136
    __check_input(input, offset, dim1, dim2)
L
Li Fuchen 已提交
137 138 139 140
    helper = LayerHelper("diag_embed", **locals())

    out = helper.create_variable_for_type_inference(dtype=input.dtype)

141 142 143 144 145 146 147 148
    helper.append_op(type='diag_embed',
                     inputs={'Input': [input]},
                     attrs={
                         'offset': offset,
                         'dim1': dim1,
                         'dim2': dim2
                     },
                     outputs={'Out': [out]})
L
Li Fuchen 已提交
149 150
    out.stop_gradient = True
    return out
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191


def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    r"""
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:

    .. math::

        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    .. code-block:: text

        Case:

        Consider input:
            x = [3, 1, 1, 0]    max_len = 4

        then we get out:
            mask = [[1, 1, 1, 0],
                    [1, 0, 0, 0],
                    [1, 0, 0, 0],
                    [0, 0, 0, 0]]

    Args:
        x (Variable): Input tensor of sequence_mask layer, \
            whose elements are integers less than :code:`maxlen`. \
            Tensor or LodTensor with shape [d_1, d_2, ..., d_n].
        maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|paddle.dtype|str, optional): Data type of the output, \
             ``int64`` by default.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

192
    Returns:
193
            Tensor, The output sequence mask. Tensor with shape [d_1, d_2, ..., d_n, maxlen] \
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            and data type of :code:`dtype`. The data type should be bool, float32, float64, int8, \
            int32 or int64.

    Examples:
        .. code-block:: python

            import paddle

            lengths = paddle.to_tensor([10, 9, 8])
            mask = paddle.nn.functional.sequence_mask(lengths)

            print(mask.numpy())
            # [[1 1 1 1 1 1 1 1 1 1]
            #  [1 1 1 1 1 1 1 1 1 0]
            #  [1 1 1 1 1 1 1 1 0 0]]

    """

    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        if maxlen is not None:
            if isinstance(maxlen, core.eager.Tensor):
                attrs = ('out_dtype', dtype)
218
                out = _legacy_C_ops.sequence_mask(x, maxlen, *attrs)
219 220
            else:
                attrs = ('out_dtype', dtype, 'maxlen', maxlen)
221
                out = _legacy_C_ops.sequence_mask(x, None, *attrs)
222 223 224 225 226 227 228 229 230 231 232 233 234 235
            out.stop_gradient = True
            return out

    helper = LayerHelper('sequence_mask', **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

236 237 238 239
    helper.append_op(type='sequence_mask',
                     inputs=inputs,
                     outputs={'Y': out},
                     attrs=attrs)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    out.stop_gradient = True
    return out


def gather_tree(ids, parents):
    r"""
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:
                gather_tree(ids, parents)
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Tensor): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Tensor): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
            A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle

            ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]])

            parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]])

            final_sequences = paddle.nn.functional.gather_tree(ids, parents)
            # [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]]

    """
306 307 308 309 310 311 312
    if ids.ndim != 3:
        raise ValueError(
            "The input ids must be a 3D tensor with shape [length, batch_size, beam_size]"
        )
    if ids.ndim != parents.ndim:
        raise ValueError("The ids's shape must be the same as parents' shape. ")

313
    if in_dygraph_mode():
314
        return _C_ops.gather_tree(ids, parents)
315 316
    else:
        if _in_legacy_dygraph():
317
            return _legacy_C_ops.gather_tree(ids, parents)
318 319 320 321 322 323 324 325
        else:
            helper = LayerHelper('gather_tree', **locals())
            check_variable_and_dtype(ids, 'ids', ['int32', 'int64'],
                                     'gather_tree')
            check_variable_and_dtype(parents, 'parents', ['int32', 'int64'],
                                     'gather_tree')
            out = helper.create_variable_for_type_inference(dtype=ids.dtype)

326 327 328 329 330 331
            helper.append_op(type="gather_tree",
                             inputs={
                                 "Ids": ids,
                                 "Parents": parents
                             },
                             outputs={"Out": out})
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

            return out


@templatedoc()
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
    """

    **Temporal Shift Operator**

    ${comment}

    Args:
        x(Tensor): ${x_comment}
        seg_num(int): ${seg_num_comment}
        shift_ratio(float): ${shift_ratio_comment}
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Returns:
        out(Tensor): The temporal shifting result is a tensor with the
        same shape and same data type as the input.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([6, 4, 2, 2])
            out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
    """
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))
C
ccrrong 已提交
370
    if in_dygraph_mode():
371
        return _C_ops.temporal_shift(x, seg_num, shift_ratio, data_format)
372
    if _non_static_mode():
373 374 375
        return _legacy_C_ops.temporal_shift(x, 'seg_num', seg_num,
                                            'shift_ratio', shift_ratio,
                                            'data_format', data_format)
376 377 378 379 380 381 382 383 384 385 386

    helper = LayerHelper("temporal_shift", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift')
    check_type(seg_num, 'seg_num', int, 'temporal_shift')
    check_type(shift_ratio, 'shift_ratio', float, 'temporal_shift')

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

387 388 389 390 391 392 393 394
    helper.append_op(type="temporal_shift",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={
                         "seg_num": seg_num,
                         "shift_ratio": shift_ratio,
                         "data_format": data_format
                     })
395
    return out