test_viterbi_decode_op.py 5.9 KB
Newer Older
J
Jack Zhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import core
import unittest
import paddle
17

J
Jack Zhou 已提交
18 19 20 21
paddle.enable_static()


class Decoder(object):
22

J
Jack Zhou 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def __init__(self, transitions, use_tag=True):
        self.transitions = transitions
        self.use_tag = use_tag
        self.start_idx, self.stop_idx = -1, -2

    def __call__(self, inputs, length):
        bs, seq_len, n_label = inputs.shape
        inputs_t = np.transpose(inputs, (1, 0, 2))
        trans_exp = np.expand_dims(self.transitions, axis=0)
        historys = []
        left_length = np.array(length)
        max_seq_len = np.amax(left_length)
        left_length = np.expand_dims(left_length, 1)
        alpha = np.full((bs, n_label), -1e4, dtype='float32') if self.use_tag \
            else np.zeros((bs, n_label), dtype='float32')
        alpha[:, -1] = 0
        for i, logit in enumerate(inputs_t[:max_seq_len]):
            if i == 0 and not self.use_tag:
                alpha = logit
                left_length = left_length - 1
                continue
            alpha_exp = np.expand_dims(alpha, 2)
            alpha_trn_sum = alpha_exp + trans_exp
            max_res = np.amax(alpha_trn_sum, 1), np.argmax(alpha_trn_sum, 1)
            historys = historys + [max_res[1]] if i >= 1 else []
            alpha_nxt = max_res[0] + logit
            mask = (left_length > 0)
            alpha = mask * alpha_nxt + (1 - mask) * alpha
            if self.use_tag:
                alpha += (left_length == 1) * trans_exp[:, self.stop_idx]
            left_length = left_length - 1
        scores, last_ids = np.amax(alpha, 1), np.argmax(alpha, 1)
        left_length = left_length[:, 0]
        last_ids_update = last_ids * (left_length >= 0)
        batch_path = [last_ids_update]
        batch_offset = np.arange(bs) * n_label
        for hist in reversed(historys):
            left_length = left_length + 1
            gather_idx = batch_offset + last_ids
            last_ids_update = np.take(hist, gather_idx) * (left_length > 0)
            mask = (left_length == 0)
            last_ids_update = last_ids_update * (1 - mask) + last_ids * mask
            batch_path.insert(0, last_ids_update)
            last_ids = last_ids_update + (left_length < 0) * last_ids
        batch_path = np.stack(batch_path, 1)
        return scores, batch_path


class TestViterbiOp(OpTest):
72

J
Jack Zhou 已提交
73 74 75 76 77 78 79
    def set_attr(self):
        self.dtype = "float32" if core.is_compiled_with_rocm() else "float64"
        self.use_tag = True
        self.bz, self.len, self.ntags = 4, 8, 10

    def setUp(self):
        self.op_type = "viterbi_decode"
H
hong 已提交
80
        self.python_api = paddle.text.viterbi_decode
J
Jack Zhou 已提交
81 82 83 84 85 86 87 88 89 90 91 92
        self.set_attr()
        bz, length, ntags = self.bz, self.len, self.ntags
        self.input = np.random.randn(bz, length, ntags).astype(self.dtype)
        self.trans = np.random.randn(ntags, ntags).astype(self.dtype)
        self.length = np.random.randint(1, length + 1, [bz]).astype('int64')
        decoder = Decoder(self.trans, self.use_tag)
        scores, path = decoder(self.input, self.length)
        self.inputs = {
            'Input': self.input,
            'Transition': self.trans,
            'Length': self.length
        }
93 94 95
        self.attrs = {
            'include_bos_eos_tag': self.use_tag,
        }
J
Jack Zhou 已提交
96 97 98
        self.outputs = {'Scores': scores, 'Path': path}

    def test_output(self):
H
hong 已提交
99
        self.check_output(check_eager=True)
J
Jack Zhou 已提交
100 101 102


class TestViterbiAPI(unittest.TestCase):
103

J
Jack Zhou 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    def set_attr(self):
        self.use_tag = True
        self.bz, self.len, self.ntags = 4, 8, 10
        self.places = [fluid.CPUPlace(), fluid.CUDAPlace(0)]    \
            if core.is_compiled_with_cuda() else [fluid.CPUPlace()]

    def setUp(self):
        self.set_attr()
        bz, length, ntags = self.bz, self.len, self.ntags
        self.input = np.random.randn(bz, length, ntags).astype('float32')
        self.transitions = np.random.randn(ntags, ntags).astype('float32')
        self.length = np.random.randint(1, length + 1, [bz]).astype('int64')
        decoder = Decoder(self.transitions, self.use_tag)
        self.scores, self.path = decoder(self.input, self.length)

    def check_static_result(self, place):
        bz, length, ntags = self.bz, self.len, self.ntags
        with fluid.program_guard(fluid.Program(), fluid.Program()):
122 123 124 125 126 127
            Input = fluid.data(name="Input",
                               shape=[bz, length, ntags],
                               dtype="float32")
            Transition = fluid.data(name="Transition",
                                    shape=[ntags, ntags],
                                    dtype="float32")
J
Jack Zhou 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            Length = fluid.data(name="Length", shape=[bz], dtype="int64")
            decoder = paddle.text.ViterbiDecoder(Transition, self.use_tag)
            score, path = decoder(Input, Length)
            exe = fluid.Executor(place)
            feed_list = {
                "Input": self.input,
                "Transition": self.transitions,
                "Length": self.length
            }
            fetches = exe.run(feed=feed_list, fetch_list=[score, path])
            np.testing.assert_allclose(fetches[0], self.scores, rtol=1e-5)
            np.testing.assert_allclose(fetches[1], self.path)

    def test_static_net(self):
        for place in self.places:
            self.check_static_result(place)
H
hong 已提交
144 145 146 147 148


if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()