test_split_op.py 24.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
Y
Yancey 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest, convert_float_to_uint16
19
import paddle.fluid as fluid
20
from paddle.fluid import Program, core, program_guard
H
hong 已提交
21
from paddle.fluid.framework import _test_eager_guard
Y
Yancey 已提交
22 23 24


class TestSplitOp(OpTest):
25

Y
Yancey 已提交
26
    def setUp(self):
T
fix ut  
typhoonzero 已提交
27
        self._set_op_type()
28
        self.dtype = self.get_dtype()
Y
Yancey1989 已提交
29
        axis = 1
30 31 32 33 34 35 36 37 38 39 40 41
        if self.dtype == np.uint16:
            x = np.random.random((4, 5, 6)).astype(np.float32)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': convert_float_to_uint16(x)}
            self.outputs = {'Out': [('out%d' % i, convert_float_to_uint16(out[i])) \
                for i in range(len(out))]}
        else:
            x = np.random.random((4, 5, 6)).astype(self.dtype)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': x}
            self.outputs = {'Out': [('out%d' % i, out[i]) \
                for i in range(len(out))]}
Y
Yancey1989 已提交
42
        self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
Y
Yancey 已提交
43

44
    def get_dtype(self):
45
        return "float64"
46

T
typhoonzero 已提交
47 48 49
    def _set_op_type(self):
        self.op_type = "split"

Y
Yancey 已提交
50 51 52
    def test_check_output(self):
        self.check_output()

Y
Yancey1989 已提交
53 54
    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])
Y
Yancey 已提交
55 56


57 58
# test with attr(num)
class TestSplitOp_2(OpTest):
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
83
        return "float64"
84 85 86 87 88 89 90 91 92 93 94 95 96

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {
            'X': self.x,
            'AxisTensor': np.array([self.axis]).astype("int32")
        }
        self.attrs = {'sections': self.sections, 'num': self.num}

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
120
        return "float64"
121 122 123 124 125 126 127 128 129 130 131 132 133

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}

        sections_tensor = []
        for index, ele in enumerate(self.sections):
            sections_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs['SectionsTensorList'] = sections_tensor

        self.attrs = {
            'axis': self.axis,
            'sections': self.sections_infer,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 1
        self.sections = [2, 1, 2]
        self.sections_infer = [-1, -1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
167
        return "float64"
168 169 170 171 172 173 174 175 176 177 178 179

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestSplitOp_unk_section(OpTest):
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = [2, 1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
204
        return "float64"
205 206 207 208 209 210 211 212 213 214 215

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


T
typhoonzero 已提交
216
class TestSplitByrefOp(OpTest):
217

T
typhoonzero 已提交
218 219 220 221
    def _set_op_type(self):
        self.op_type = "split_byref"


222 223 224 225
#----------------Split Fp16----------------


def create_test_fp16(parent):
226

227 228
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
229
    class TestSplitFp16(parent):
230

231 232 233 234 235 236 237 238 239 240 241 242 243
        def get_dtype(self):
            return np.float16

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestSplitFp16.__name__ = cls_name
    globals()[cls_name] = TestSplitFp16


create_test_fp16(TestSplitOp)

244 245 246 247
#----------------Split Bf16----------------


def create_test_bf16(parent):
248

249 250 251
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestSplitBf16(parent):
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        def get_dtype(self):
            return np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestSplitBf16.__name__ = cls_name
    globals()[cls_name] = TestSplitBf16


create_test_bf16(TestSplitOp)

270

271
class TestSplitAPI(unittest.TestCase):
272

273 274
    def test_api(self):
        input_1 = np.random.random([4, 5, 6]).astype("int32")
275 276 277
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
278 279 280 281
        x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
        x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')

        out_0, out_1, out_2 = fluid.layers.split(
282 283 284 285
            input=x_1,
            num_or_sections=[positive_2_int64, positive_1_int32, -1],
            dim=positive_1_int64)

286 287 288
        out_3, out_4, out_5 = fluid.layers.split(input=x_1,
                                                 num_or_sections=[2, 1, 2],
                                                 dim=positive_1_int32)
289 290 291
        fluid.layers.split(input=x_2, num_or_sections=2, dim=2)

        exe = fluid.Executor(place=fluid.CPUPlace())
292 293 294 295 296 297 298
        [res_0, res_1, res_2, res_3, res_4,
         res_5] = exe.run(fluid.default_main_program(),
                          feed={
                              "x_1": input_1,
                              "x_2": input_1
                          },
                          fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5])
299 300 301 302 303 304 305 306 307 308

        out = np.split(input_1, [2, 3], 1)
        assert np.array_equal(res_0, out[0])
        assert np.array_equal(res_1, out[1])
        assert np.array_equal(res_2, out[2])
        assert np.array_equal(res_3, out[0])
        assert np.array_equal(res_4, out[1])
        assert np.array_equal(res_5, out[2])


309
class TestSplitOpError(unittest.TestCase):
310

311 312 313 314 315 316 317 318 319
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of axis in split_op should be int or Variable.
            def test_axis_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
                fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type)

320 321 322 323 324 325 326 327
            # The type of axis in split_op should be int or Variable.
            def test_axis_variable_type():
                x9 = fluid.layers.data(shape=[4], dtype='float16', name='x9')
                x10 = fluid.layers.data(shape=[1], dtype='float16', name='x10')
                fluid.layers.split(input=x9, num_or_sections=2, dim=x10)

            self.assertRaises(TypeError, test_axis_variable_type)

328 329 330 331 332 333 334
            # The type of num_or_sections in split_op should be int, tuple or list.
            def test_num_or_sections_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
                fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type)

335 336 337 338 339 340 341 342 343 344 345 346 347 348
            def test_num_or_sections_type_tensor():
                x7 = fluid.layers.data(shape=[4], dtype='float16', name='x5')
                paddle.split(input=x7, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type_tensor)

            def test_axis_type_tensor():
                x8 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
                paddle.split(input=x8, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type_tensor)


class API_TestSplit(unittest.TestCase):
349

350 351 352 353
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1], dtype='int32')
354
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=data2)
355 356 357 358
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            input2 = np.array([2]).astype('int32')
359 360 361 362
            r0, r1, r2, = exe.run(feed={
                "data1": input1,
                "data2": input2
            },
363 364
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
365 366 367
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, r2, rtol=1e-05)
368 369 370


class API_TestSplit2(unittest.TestCase):
371

372 373 374
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
375
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=2)
376 377 378 379 380 381
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            r0, r1, r2, = exe.run(feed={"data1": input1},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
382 383 384
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
            np.testing.assert_allclose(ex_x2, r2, rtol=1e-05)
385 386 387


class API_TestSplit3(unittest.TestCase):
388

389 390 391
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
392
            x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1)
393 394 395 396 397
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
398 399
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
400 401 402


class API_TestSplit4(unittest.TestCase):
403

404 405 406 407
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            index = fluid.layers.data('index', shape=[1], dtype='int32')
408
            x0, x1 = paddle.split(data, num_or_sections=(3, index), axis=1)
409 410 411 412
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            input2 = np.array([7]).astype('int32')
413 414 415 416
            r0, r1 = exe.run(feed={
                "data": input1,
                "index": input2
            },
417 418
                             fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
419 420
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)
421 422


C
Charles-hit 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
class API_TestSplit5(unittest.TestCase):

    def test_out(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                input_1 = np.random.random([5, 4]).astype("int32")
                # input is a variable which shape is [5, 4]
                input = paddle.to_tensor(input_1)
                n = paddle.full([1], 5, dtype='int32')
                out = paddle.split(input, [n])
                exe = paddle.static.Executor(place=place)
                re = exe.run(fetch_list=[out])
                re = re[0]
                ex_out = np.split(input_1, [5])
                ex_out = ex_out[0]
                np.testing.assert_allclose(ex_out, re, rtol=1e-05)


443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
class API_TestSplit6(unittest.TestCase):

    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            x0, x1 = paddle.split(data, num_or_sections=[1, 1], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([2, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (1, ), axis=0)
            np.testing.assert_allclose(ex_x0, r0, rtol=1e-05)
            np.testing.assert_allclose(ex_x1, r1, rtol=1e-05)


C
Charles-hit 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
class API_TestDygraphFluidSplit(unittest.TestCase):

    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
                np.testing.assert_allclose(input.gradient(),
                                           manul_grad,
                                           rtol=1e-05)
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)

        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = fluid.layers.split(input, [2, 2, 2], dim=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = fluid.layers.split(input, [2, 2, 2], dim=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
                np.testing.assert_allclose(input.gradient(),
                                           manul_grad,
                                           rtol=1e-05)
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)

        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)


527
class API_TestDygraphSplit(unittest.TestCase):
528

529 530 531 532
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
533
            input = paddle.to_tensor(input_1)
534 535 536 537 538
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
H
hong 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551

            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
552 553 554 555 556 557
                np.testing.assert_allclose(input.gradient(),
                                           manul_grad,
                                           rtol=1e-05)
                np.testing.assert_allclose(ex_x0, eager_x0_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x1, eager_x1_out, rtol=1e-05)
                np.testing.assert_allclose(ex_x2, eager_x2_out, rtol=1e-05)
H
hong 已提交
558

559 560 561
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
562 563 564 565 566

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("bool")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
567
            input = paddle.to_tensor(input_1)
568 569 570 571 572
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
573 574 575
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
576

C
Charles-hit 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    def test_out3(self):
        with fluid.dygraph.guard():
            np.random.seed(2021)
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            out_dy = paddle.split(input, [6], axis=1)
            out_dy = out_dy[0]
            out_dy_np = out_dy.numpy()
            ex_out = np.split(input_1, [6], axis=1)
            ex_out = ex_out[0]
            with _test_eager_guard():
                input = paddle.to_tensor(input_1)
                out_eager = paddle.split(input, [6], axis=1)
                out_eager = out_eager[0]
                out_eager_np = out_dy.numpy()
                np.testing.assert_allclose(ex_out, out_eager_np, rtol=1e-05)
        np.testing.assert_allclose(ex_out, out_dy_np, rtol=1e-05)

596 597 598 599
    def test_out_tensor_input(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
600
            input = paddle.to_tensor(input_1)
601
            num1 = paddle.full(shape=[1], fill_value=2, dtype='int32')
602 603 604
            x0, x1, x2 = paddle.split(input,
                                      num_or_sections=[num1, 2, 2],
                                      axis=1)
605 606 607 608
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
609 610 611
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
612 613

    def test_axis_tensor_input(self):
614 615 616
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
617
            input = paddle.to_tensor(input_1)
618
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
619 620 621
            x0, x1, x2 = paddle.split(input,
                                      num_or_sections=[2, 2, 2],
                                      axis=num1)
622 623 624 625
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
626 627 628
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
629

630 631 632 633 634 635 636 637
    def func_negative_one_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = paddle.to_tensor(input_1)
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
            x0 = paddle.split(input, num_or_sections=[-1], axis=num1)
            x0_out = x0[0].numpy()
638
        np.testing.assert_array_equal(x0_out, input.numpy())
639 640 641 642 643 644

    def test_negative_one_section(self):
        with _test_eager_guard():
            self.func_negative_one_section()
        self.func_negative_one_section()

645

646
class API_TestEmptySplit(unittest.TestCase):
647

648 649 650 651 652 653 654 655 656 657 658 659 660
    def test_axis_input_empty_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([8, 6, 6]).astype("float32")
            # input is a variable which shape is [8, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=[5, 0, 3])
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, [
                5,
                5,
            ])
661 662 663
        np.testing.assert_allclose(ex_x0, x0_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x1, x1_out, rtol=1e-05)
        np.testing.assert_allclose(ex_x2, x2_out, rtol=1e-05)
664 665


Y
Yancey 已提交
666
if __name__ == '__main__':
667
    paddle.enable_static()
Y
Yancey 已提交
668
    unittest.main()