test_rmsprop_op.py 11.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16

17
import numpy as np
18 19
import paddle.fluid.core as core
from paddle.fluid.op import Operator
S
sneaxiy 已提交
20
import paddle.fluid as fluid
M
MRXLT 已提交
21
import paddle
S
sneaxiy 已提交
22 23 24 25 26 27 28


def create_selected_rows_and_tensor(scope, place, height, row_num,
                                    embedding_size):
    sr = scope.var("@selected_rows@").get_selected_rows()
    tensor = scope.var("grad").get_tensor()

29 30 31
    rows = np.random.random_integers(low=0, high=height - 1, size=[
        row_num,
    ]).astype('int64')
S
sneaxiy 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44
    sr_val = np.random.random(size=[row_num, embedding_size]).astype('float32')

    sr.set_height(height)
    sr.set_rows(rows)
    sr.get_tensor().set(sr_val, place)

    tensor_val = np.zeros(shape=[height, embedding_size], dtype='float32')
    for i in range(row_num):
        row = rows[i]
        tensor_val[row, :] = tensor_val[row, :] + sr_val[i, :]

    tensor.set(tensor_val, place)
    return tensor_val, sr_val
45 46 47


class TestBase(unittest.TestCase):
48

S
sneaxiy 已提交
49 50 51 52 53 54 55
    def setup(self,
              place,
              is_sparse,
              centered,
              size,
              row_num=None,
              epsilon=1e-6):
56 57
        np.random.seed(5)  # fix seed

S
sneaxiy 已提交
58 59 60
        self.scope = fluid.global_scope()
        self.place = place

61
        self.param_name = "param"
S
sneaxiy 已提交
62
        self.param = np.random.random(size).astype("float32")
63 64

        self.mean_square_name = "mean_square"
65 66
        self.mean_square = np.random.uniform(low=1, high=2,
                                             size=size).astype("float32")
67 68

        self.mean_grad_name = "mean_grad"
S
sneaxiy 已提交
69
        self.mean_grad = np.random.random(size).astype("float32")
70 71 72 73 74

        self.lr_name = "lr"
        self.learning_rate = np.array([0.01]).astype("float32")

        self.grad_name = "grad"
S
sneaxiy 已提交
75 76 77 78 79 80 81 82 83 84

        self.is_sparse = is_sparse
        if self.is_sparse:
            self.grad_sr_name = "@selected_rows@"
            self.grad, self.grad_sr = create_selected_rows_and_tensor(
                self.scope, place, size[0], row_num, size[1])
        else:
            self.grad = np.random.random(size).astype("float32")
            grad_tensor = self.scope.var(self.grad_name).get_tensor()
            grad_tensor.set(self.grad, place)
85 86

        self.moment_name = "moment"
87 88
        self.moment = np.random.uniform(low=0, high=1,
                                        size=size).astype("float32")
89 90 91

        self.epsilon = epsilon
        self.decay = 0.9
S
sneaxiy 已提交
92
        self.momentum = 0.1
93 94
        self.centered = centered

95 96
        self.ms_out = self.decay * self.mean_square + (
            1 - self.decay) * self.grad * self.grad
97
        if centered:
98 99
            self.mg_out = self.decay * self.mean_grad + (1 -
                                                         self.decay) * self.grad
100 101 102 103 104 105 106 107 108
            self.moment_out = self.momentum * self.moment + \
                              self.learning_rate * self.grad / np.sqrt(self.ms_out - np.square(self.mg_out) + self.epsilon)
        else:
            self.moment_out = self.momentum * self.moment + \
                              self.learning_rate * self.grad / np.sqrt(self.ms_out + self.epsilon)

        self.param_out = self.param - self.moment_out

        # create and initialize Param Variable
S
sneaxiy 已提交
109 110
        self.param_tensor = self.scope.var(self.param_name).get_tensor()
        self.param_tensor.set(self.param, place)
111

S
sneaxiy 已提交
112 113 114
        self.mean_square_tensor = self.scope.var(
            self.mean_square_name).get_tensor()
        self.mean_square_tensor.set(self.mean_square, place)
115

S
sneaxiy 已提交
116
        lr = self.scope.var(self.lr_name).get_tensor()
117 118
        lr.set(self.learning_rate, place)

S
sneaxiy 已提交
119 120
        self.moment_tensor = self.scope.var(self.moment_name).get_tensor()
        self.moment_tensor.set(self.moment, place)
121

S
sneaxiy 已提交
122 123 124 125
        if self.centered:
            self.mean_grad_tensor = self.scope.var(
                self.mean_grad_name).get_tensor()
            self.mean_grad_tensor.set(self.mean_grad, place)
126

S
sneaxiy 已提交
127
    def check(self, actual_t, expect_t, place, out_name, atol=1e-5):
128 129 130 131 132 133 134
        np.testing.assert_allclose(
            actual_t,
            expect_t,
            rtol=1e-05,
            atol=atol,
            err_msg='Output (' + out_name + ') has diff at ' + str(place) +
            '\nExpect ' + str(expect_t) + '\n' + 'But Got' + str(actual_t))
135

S
sneaxiy 已提交
136 137

class TestRmspropOp(TestBase):
138

S
sneaxiy 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def check_with_place(self,
                         place,
                         is_sparse,
                         centered,
                         size,
                         row_num=None,
                         epsilon=1e-6):
        self.setup(place, is_sparse, centered, size, row_num, epsilon)
        self.run_and_check()

    def run_and_check(self):
        grad_name = self.grad_sr_name if self.is_sparse else self.grad_name

        kwargs = {
            'Param': self.param_name,
            'Grad': grad_name,
            'MeanSquare': self.mean_square_name,
            'Moment': self.moment_name,
            'LearningRate': self.lr_name,
            'ParamOut': self.param_name,
            'MeanSquareOut': self.mean_square_name,
            'MomentOut': self.moment_name,
            'epsilon': self.epsilon,
            'decay': self.decay,
            'momentum': self.momentum,
            'centered': self.centered
        }
166 167

        if self.centered:
S
sneaxiy 已提交
168 169 170 171 172 173 174
            kwargs['MeanGrad'] = self.mean_grad_name
            kwargs['MeanGradOut'] = self.mean_grad_name

        rmsprop_op = Operator('rmsprop', **kwargs)
        atol = 1e-6

        rmsprop_op.run(self.scope, self.place)
175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        self.check(np.array(self.mean_square_tensor),
                   self.ms_out,
                   self.place,
                   self.mean_square_name,
                   atol=atol)
        self.check(np.array(self.moment_tensor),
                   self.moment_out,
                   self.place,
                   self.moment_name,
                   atol=atol)
        self.check(np.array(self.param_tensor),
                   self.param_out,
                   self.place,
                   self.param_name,
                   atol=atol)
191 192

        if self.centered:
193 194
            self.check(np.array(self.mean_grad_tensor), self.mg_out, self.place,
                       self.mean_grad_name)
195 196 197 198 199

    def test_rmsprop(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
S
sneaxiy 已提交
200 201

        size = (128, 320)
202
        for place in places:
S
sneaxiy 已提交
203 204
            for centered in [False, True]:
                with fluid.scope_guard(core.Scope()):
205 206 207 208
                    self.check_with_place(place,
                                          is_sparse=False,
                                          centered=centered,
                                          size=size)
S
sneaxiy 已提交
209 210

                with fluid.scope_guard(core.Scope()):
211 212 213 214 215
                    self.check_with_place(place,
                                          is_sparse=True,
                                          centered=centered,
                                          row_num=512,
                                          size=size)
S
sneaxiy 已提交
216 217

                with fluid.scope_guard(core.Scope()):
218 219 220 221 222
                    self.check_with_place(place,
                                          is_sparse=True,
                                          centered=centered,
                                          row_num=60,
                                          size=size)
223 224


M
MRXLT 已提交
225
class TestRMSPropV2(unittest.TestCase):
226

M
MRXLT 已提交
227 228 229 230
    def test_rmsprop_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
231
        linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
232
        # This can be any optimizer supported by dygraph.
233 234 235
        adam = paddle.optimizer.RMSProp(learning_rate=0.01,
                                        parameters=linear.parameters(),
                                        weight_decay=0.01)
M
MRXLT 已提交
236 237 238 239 240 241
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_rmsprop(self):
242
        paddle.enable_static()
M
MRXLT 已提交
243 244 245 246 247 248 249
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
250
            avg_cost = paddle.mean(cost)
M
MRXLT 已提交
251 252 253 254 255

            rms_optimizer = paddle.optimizer.RMSProp(learning_rate=0.1)
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
256 257
            train_reader = paddle.batch(paddle.dataset.uci_housing.train(),
                                        batch_size=1)
M
MRXLT 已提交
258 259 260 261 262 263 264 265
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
        self.assertRaises(ValueError, paddle.optimizer.RMSProp, None)
266 267 268 269 270 271 272 273 274 275 276 277
        self.assertRaises(ValueError,
                          paddle.optimizer.RMSProp,
                          learning_rate=0.1,
                          rho=None)
        self.assertRaises(ValueError,
                          paddle.optimizer.RMSProp,
                          learning_rate=0.1,
                          epsilon=None)
        self.assertRaises(ValueError,
                          paddle.optimizer.RMSProp,
                          learning_rate=0.1,
                          momentum=None)
M
MRXLT 已提交
278

M
MRXLT 已提交
279 280 281 282
    def test_rmsprop_op_invalid_input(self):
        paddle.disable_static()
        linear = paddle.nn.Linear(10, 10)
        with self.assertRaises(ValueError):
283 284 285
            adam = paddle.optimizer.RMSProp(0.1,
                                            epsilon=-1,
                                            parameters=linear.parameters())
M
MRXLT 已提交
286
        with self.assertRaises(ValueError):
287 288 289
            adam = paddle.optimizer.RMSProp(0.1,
                                            momentum=-1,
                                            parameters=linear.parameters())
M
MRXLT 已提交
290
        with self.assertRaises(ValueError):
291 292 293
            adam = paddle.optimizer.RMSProp(0.1,
                                            rho=-1,
                                            parameters=linear.parameters())
M
MRXLT 已提交
294

M
MRXLT 已提交
295

296
class TestRMSPropV2Group(TestRMSPropV2):
297

298 299 300 301 302 303 304
    def test_rmsprop_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
305 306 307 308 309 310 311 312 313 314 315
        adam = paddle.optimizer.RMSProp(learning_rate=0.01,
                                        parameters=[{
                                            'params':
                                            linear_1.parameters()
                                        }, {
                                            'params':
                                            linear_2.parameters(),
                                            'weight_decay':
                                            0.001
                                        }],
                                        weight_decay=0.01)
316 317 318 319 320 321 322
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


323
if __name__ == "__main__":
H
hong 已提交
324
    paddle.enable_static()
325
    unittest.main()