test_prune.py 38.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import paddle
18 19
import paddle.fluid as fluid
import paddle.fluid.framework as framework
20 21 22
import numpy as np
import os
import contextlib
23 24 25


class TestPrune(unittest.TestCase):
26

27 28 29 30 31
    def net(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        y = fluid.layers.fc(input=[x], size=2, act="softmax")
        loss = fluid.layers.cross_entropy(input=y, label=label)
32
        loss = paddle.mean(x=loss)
33 34 35 36 37 38 39 40 41
        return x, y, label, loss

    def test_prune_with_input(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
42 43 44
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "reduce_mean"
        ])
45 46 47 48
        pruned_program = program._prune_with_input(
            feeded_var_names=[y.name, label.name], targets=[loss])
        self.assertEqual(len(pruned_program.global_block().ops), 2)
        self.assertEqual([op.type for op in pruned_program.global_block().ops],
49
                         ["cross_entropy2", "reduce_mean"])
50 51 52 53 54 55 56 57

    def test_prune(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
58 59 60
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "reduce_mean"
        ])
61 62
        pruned_program = program._prune(targets=[loss])
        self.assertEqual(len(pruned_program.global_block().ops), 5)
63 64 65 66 67
        self.assertEqual([op.type for op in pruned_program.global_block().ops],
                         [
                             "mul", "elementwise_add", "softmax",
                             "cross_entropy2", "reduce_mean"
                         ])
68 69 70 71 72 73 74 75

    def test_prune_target_not_list(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
76 77 78
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "reduce_mean"
        ])
79 80
        pruned_program = program._prune(targets=loss)
        self.assertEqual(len(pruned_program.global_block().ops), 5)
81 82 83 84 85
        self.assertEqual([op.type for op in pruned_program.global_block().ops],
                         [
                             "mul", "elementwise_add", "softmax",
                             "cross_entropy2", "reduce_mean"
                         ])
86 87 88 89 90 91 92 93

    def test_prune_target_none(self):
        program = framework.Program()
        startup_program = framework.Program()
        block = program.global_block()
        with fluid.program_guard(program, startup_program):
            (x, y, label, loss) = self.net()
        self.assertEqual(len(block.ops), 5)
94 95 96
        self.assertEqual([op.type for op in block.ops], [
            "mul", "elementwise_add", "softmax", "cross_entropy2", "reduce_mean"
        ])
97 98 99
        try:
            pruned_program = program._prune(targets=None)
        except ValueError as e:
100 101
            self.assertIn(
                "All targets of Program._prune_with_input() can only be Variable or Operator",
102
                str(e))
103 104


105 106 107 108 109 110 111 112 113 114 115 116 117 118
def mock(self, program, feed, fetch, optimize_ops):
    self.prune_called_times += 1
    return program


@contextlib.contextmanager
def _mock_guard(mock):
    original = fluid.Executor._prune_program
    fluid.Executor._prune_program = mock
    yield
    fluid.Executor._prune_program = original


class TestExecutorRunAutoPrune(unittest.TestCase):
119

120 121 122 123 124 125 126 127 128 129 130 131 132
    def net1(self):
        x = fluid.layers.data(name='x', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w_param_attrs = fluid.ParamAttr(
            name="fc_weight",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        y = fluid.layers.fc(input=[x],
                            size=2,
                            act="softmax",
                            param_attr=w_param_attrs)
        loss1 = fluid.layers.cross_entropy(input=y, label=label)
133
        loss1 = paddle.mean(x=loss1)
134
        loss2 = fluid.layers.cross_entropy(input=y, label=label)
135
        loss2 = paddle.mean(x=loss2)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        loss1.persistable = True
        loss2.persistable = True
        return x, y, label, loss1, loss2, w_param_attrs

    def net2(self):
        x1 = fluid.layers.data(name='x1', shape=[2], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[2], dtype='float32')
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        w1_param_attrs = fluid.ParamAttr(
            name="fc_weight1",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        w2_param_attrs = fluid.ParamAttr(
            name="fc_weight2",
            learning_rate=0.5,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        y1 = fluid.layers.fc(input=[x1],
                             size=2,
                             act="softmax",
                             param_attr=w1_param_attrs)
        y2 = fluid.layers.fc(input=[x2],
                             size=2,
                             act="softmax",
                             param_attr=w2_param_attrs)
        loss1 = fluid.layers.cross_entropy(input=y1, label=label)
163
        loss1 = paddle.mean(x=loss1)
164
        loss2 = fluid.layers.cross_entropy(input=y2, label=label)
165
        loss2 = paddle.mean(x=loss2)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        return x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs, w2_param_attrs

    def test_not_prune(self):
        """
        If use_prune = False, the targets which is not fetched will be calculated.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
183 184 185 186
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
187 188 189 190 191 192 193
                              fetch_list=[loss1.name],
                              use_prune=False)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNotNone(scope.find_var(loss2.name))

    def test_prune_fetches_without_optimizer(self):
        """
194
        Prune operators and variables which are not needed to generate 'fetches'.
195 196 197 198 199 200 201 202 203 204 205 206 207 208
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
209 210 211 212
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
213 214 215 216 217 218
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))  #loss2 is pruned
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
219 220
                np.testing.assert_array_equal(weight_init,
                                              weight)  # weight not changed
221 222 223

    def test_prune_fetches_with_optimizer(self):
        """
224
        Prune operators and operators which are not needed to generate 'fetches'.
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        In train mode, the operators and operators in backward and optimization should be kept.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
242 243 244 245
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))  #loss2 is pruned
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight_init,
                                                weight))  # weight changed

    def test_prune_compiled_program(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                compiled_prog = fluid.CompiledProgram(
267 268
                    program).with_data_parallel(loss_name=loss1.name,
                                                places=fluid.CPUPlace())
269 270 271 272 273
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(compiled_prog,
274 275 276 277
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight_init,
                                                weight))  # weight changed

    def test_prune_feed_without_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
301 302 303 304
                              feed={
                                  y.name: x_np,
                                  'label': label_np
                              },
305 306 307 308 309 310
                              fetch_list=[loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
311 312
                np.testing.assert_array_equal(weight_init,
                                              weight)  # weight unchanged
313 314 315 316 317 318 319 320 321 322 323 324 325 326

    def test_prune_feed_with_optimizer(self):
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                sgd_optimizer.minimize(loss1)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
327 328 329 330 331 332 333 334 335
                self.assertRaises(Exception,
                                  exe.run,
                                  program,
                                  feed={
                                      y.name: x_np,
                                      'label': label_np
                                  },
                                  fetch_list=[loss1.name],
                                  use_prune=True)
336 337 338 339 340
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))

    def test_prune_with_cache_program(self):
        '''
341
        When use_prune=True, Executor should cache the pruned program.
342 343 344
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
345
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run()
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
361 362
                    label_np = np.random.randint(1,
                                                 size=(10, 1)).astype('int64')
363 364
                    for i in range(10):
                        res = exe.run(program,
365 366 367 368
                                      feed={
                                          'x': x_np,
                                          'label': label_np
                                      },
369
                                      fetch_list=[loss1.name],
370
                                      use_prune=True)
371 372 373 374 375
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

376 377 378
    def test_prune_with_cache_program2(self):
        '''
        When use_prune=True, Executor should cache the pruned program.
379
        If the only difference in fetch_list is  optimize_ops during multiple runs,
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        the cache_keys should be different and get different pruned program.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                     w2_param_attrs) = self.net2()
                    adam_optimizer1 = fluid.optimizer.AdamOptimizer(
                        learning_rate=0.5)
                    train1 = adam_optimizer1.minimize(loss1)
                    adam_optimizer2 = fluid.optimizer.AdamOptimizer(
                        learning_rate=0.5)
                    train2 = adam_optimizer2.minimize(loss2)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
400 401
                    label_np = np.random.randint(1,
                                                 size=(10, 1)).astype('int64')
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

                    for i in range(10):
                        if i % 2:
                            res = exe.run(program,
                                          feed={
                                              'x1': x_np,
                                              'x2': x_np,
                                              'label': label_np
                                          },
                                          fetch_list=[loss1, loss2, train1],
                                          use_prune=True)
                        else:
                            res = exe.run(program,
                                          feed={
                                              'x1': x_np,
                                              'x2': x_np,
                                              'label': label_np
                                          },
                                          fetch_list=[loss1, loss2, train2],
                                          use_prune=True)
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        elif i == 1:
                            self.assertEqual(exe.prune_called_times, 2)
                        else:
                            self.assertEqual(exe.prune_called_times, 2)

429 430
    def test_prune_with_cache_compiled_program(self):
        '''
431
        When use_prune=True, Executor should cache the pruned program.
432 433 434
        If in next run, the program, feed, fetch are not changed, Executor use the cached pruned program,
        and needn't to call  _prune_program() to prune the program.
        In this test, we hack the Executor._prune_program with a mock function which do nothing but increase
435
        Executor.prune_called_times, and we check prune_called_times equals 1 even if we called exe.run()
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        10 times with the same input arguments.
        '''
        with _mock_guard(mock):
            exe = fluid.Executor(fluid.CPUPlace())
            exe.prune_called_times = 0
            program = framework.Program()
            startup_program = framework.Program()
            scope = fluid.Scope()
            with fluid.scope_guard(scope):
                with fluid.program_guard(program, startup_program):
                    (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                    sgd_optimizer.minimize(loss1)
                    exe.run(startup_program)
                    x_np = np.random.random(size=(10, 2)).astype('float32')
451 452
                    label_np = np.random.randint(1,
                                                 size=(10, 1)).astype('int64')
453
                    compiled_prog = fluid.CompiledProgram(
454 455
                        program).with_data_parallel(loss_name=loss1.name,
                                                    places=fluid.CPUPlace())
456 457
                    for i in range(10):
                        res = exe.run(compiled_prog,
458 459 460 461
                                      feed={
                                          'x': x_np,
                                          'label': label_np
                                      },
462
                                      fetch_list=[loss1.name],
463
                                      use_prune=True)
464 465 466 467 468 469 470
                        if i == 0:
                            self.assertEqual(exe.prune_called_times, 1)
                        else:
                            self.assertEqual(exe.prune_called_times, 1)

    def test_prune_with_multi_optimizers(self):
        '''
471
        If there are multiple optimizers in the program, we can run specific one by
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
490 491 492 493
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
494 495 496 497 498 499 500 501 502 503
                              fetch_list=[loss1.name],
                              use_prune=False)
                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
504 505 506 507
                          feed={
                              'x': x_np,
                              'label': label_np
                          },
508 509 510 511 512 513 514 515 516 517
                          fetch_list=[loss1.name, train1],
                          use_prune=True)
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
518 519 520 521
                    feed={
                        'x': x_np,
                        'label': label_np
                    },
522 523 524 525 526
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

527
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_with_multi_devices(self):
        '''
        When training model with multi_devices, the pruned CompiledProgram should share same local scopes.
        This test the correctness.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        os.environ['CPU_NUM'] = str(2)
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                 w2_param_attrs) = self.net2()
                adam_optimizer1 = fluid.optimizer.AdamOptimizer(
                    learning_rate=0.5)
                train1 = adam_optimizer1.minimize(loss1)
                cloned_program = program.clone()
                adam_optimizer2 = fluid.optimizer.AdamOptimizer(
                    learning_rate=0.5)
                train2 = adam_optimizer2.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                compiled_prog1 = fluid.CompiledProgram(
556 557
                    program).with_data_parallel(loss_name=loss1.name,
                                                places=[fluid.CPUPlace()] * 2)
558
                compiled_prog2 = fluid.CompiledProgram(
559 560
                    program).with_data_parallel(loss_name=loss2.name,
                                                places=[fluid.CPUPlace()] * 2)
561 562 563 564 565 566 567 568 569 570 571 572 573 574
                for i in range(10):
                    if i % 2 == 1:
                        res = exe.run(compiled_prog1,
                                      feed=[{
                                          'x1': x_np[0:5, :],
                                          'label': label_np[0:5, :]
                                      }, {
                                          'x1': x_np[5:, :],
                                          'label': label_np[5:, :]
                                      }],
                                      fetch_list=[loss1.name, train1],
                                      use_prune=True)
                    else:
                        res = exe.run(compiled_prog2,
575 576 577 578
                                      feed={
                                          'x2': x_np,
                                          'label': label_np
                                      },
579 580 581 582 583 584 585 586 587 588 589
                                      fetch_list=[loss2.name, train2],
                                      use_prune=True)
                weight1 = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            for i in range(10):
                if i % 2 == 1:
                    exe.run(cloned_program,
590 591 592 593 594
                            feed={
                                'x1': x_np,
                                'x2': x_np,
                                'label': label_np
                            },
595 596 597
                            fetch_list=[loss1.name],
                            use_prune=False)
            weight2 = np.array(scope.find_var(w1_param_attrs.name).get_tensor())
598
        np.testing.assert_allclose(weight1, weight2, rtol=1e-05)
599 600 601

    def test_prune_program_with_tupe_in_fetch_list(self):
        '''
602
        If there are multiple optimizers in the program, we can run specific one by
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
        pass the return of optimize.minimize() to fetch_list.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()

                train2 = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

                res = exe.run(program,
623 624 625 626
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
627 628 629 630 631 632 633 634 635 636 637
                              fetch_list=[loss1.name],
                              use_prune=False)

                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
638 639 640 641
                          feed={
                              'x': x_np,
                              'label': label_np
                          },
642 643 644 645 646 647 648 649 650 651
                          fetch_list=[loss1.name, train1],
                          use_prune=True)
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
652 653 654 655
                    feed={
                        'x': x_np,
                        'label': label_np
                    },
656 657 658 659 660
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

661
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

    def test_prune_program_partial_parameter_updated(self):
        """
        When running startup program, all parameters declared will be initialized.
        When running main program with prune=True, the pruned parameters will exist in scope and stay unchanged.
        """
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x1, x2, y1, y2, label, loss1, loss2, w1_param_attrs,
                 w2_param_attrs) = self.net2()
                loss1.persistable = True
                loss2.persistable = True
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1 = sgd_optimizer.minimize(loss1)
                sgd_optimizer1 = fluid.optimizer.SGD(learning_rate=0.5)
                train2 = sgd_optimizer1.minimize(loss2)
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight1_init = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
                weight2_init = np.array(
                    scope.find_var(w2_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')

                res = exe.run(program,
692 693 694 695
                              feed={
                                  'x1': x_np,
                                  'label': label_np
                              },
696 697 698 699 700 701 702 703 704 705 706 707
                              fetch_list=[loss1.name, train1],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(w1_param_attrs.name))
                self.assertIsNotNone(scope.find_var(w2_param_attrs.name))
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight1 = np.array(
                    scope.find_var(w1_param_attrs.name).get_tensor())
                weight2 = np.array(
                    scope.find_var(w2_param_attrs.name).get_tensor())
                self.assertFalse(np.array_equal(weight1_init,
                                                weight1))  # weight changed
708 709
                np.testing.assert_array_equal(weight2_init,
                                              weight2)  # weight2 unchanged
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

    def test_prune_override_use_prune(self):
        '''
        If optimize_ops in provided in the fetch_list, the argument use_prune is always override to True.
        '''
        exe = fluid.Executor(fluid.CPUPlace())
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        # do not use_prune
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.5)
                train1, _ = sgd_optimizer.minimize(loss1)
                cloned_program = program.clone()
                train2, _ = sgd_optimizer.minimize(loss2)
                exe.run(startup_program)
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
731 732 733 734
                              feed={
                                  'x': x_np,
                                  'label': label_np
                              },
735 736 737 738 739 740 741 742 743 744 745
                              fetch_list=[loss1.name],
                              use_prune=False)

                weight_without_prune = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())

        scope = fluid.Scope()
        # use_prune
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            res = exe.run(program,
746 747 748 749
                          feed={
                              'x': x_np,
                              'label': label_np
                          },
750 751 752 753 754 755 756 757 758
                          fetch_list=[loss1.name, train1])
            weight_with_prune = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

        # expected
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
            exe.run(cloned_program,
759 760 761 762
                    feed={
                        'x': x_np,
                        'label': label_np
                    },
763 764 765 766 767
                    fetch_list=[loss1.name],
                    use_prune=False)
            weight_expected = np.array(
                scope.find_var(w_param_attrs.name).get_tensor())

768
        np.testing.assert_array_equal(weight_with_prune, weight_expected)
769 770
        self.assertFalse(np.array_equal(weight_without_prune, weight_expected))

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    def test_prune_feed_var_in_fetchlist_1(self):
        # the variable to be fed is not leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
786 787 788 789
                              feed={
                                  y.name: x_np,
                                  'label': label_np
                              },
790 791 792 793 794 795 796
                              fetch_list=[y.name, loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                self.assertIsNone(scope.find_var(x.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
797 798
                np.testing.assert_array_equal(weight_init,
                                              weight)  # weight unchanged
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

    def test_prune_feed_var_in_fetchlist_2(self):
        # the variable to be fed is leaf
        program = framework.Program()
        startup_program = framework.Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(program, startup_program):
                (x, y, label, loss1, loss2, w_param_attrs) = self.net1()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)
                weight_init = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
                x_np = np.random.random(size=(10, 2)).astype('float32')
                label_np = np.random.randint(1, size=(10, 1)).astype('int64')
                res = exe.run(program,
815 816 817 818
                              feed={
                                  x.name: x_np,
                                  'label': label_np
                              },
819 820 821 822 823 824
                              fetch_list=[x.name, loss1.name],
                              use_prune=True)
                self.assertIsNotNone(scope.find_var(loss1.name))
                self.assertIsNone(scope.find_var(loss2.name))
                weight = np.array(
                    scope.find_var(w_param_attrs.name).get_tensor())
825 826
                np.testing.assert_array_equal(weight_init,
                                              weight)  # weight unchanged
827

828

829 830
if __name__ == '__main__':
    unittest.main()