test_nce.py 13.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15
import numpy as np
16
import unittest
17
import paddle
18 19
import paddle.fluid as fluid
import paddle.fluid.initializer as initializer
20
from paddle.fluid import Program, program_guard
21

22
from op_test import OpTest
W
wanghaoshuang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39


def nce(input, weight, bias, sample_weight, labels, num_classes,
        num_sample_class):
    samples = []
    sample_labels = []
    batch_size = input.shape[0]
    num_true_class = labels.shape[1]
    for i in range(batch_size):
        w = 1 if sample_weight is None else sample_weight[i]
        for label in labels[i]:
            samples.append((i, label, True, w))
            sample_labels.append(label)
        for num in range(num_sample_class):
            samples.append((i, num, False, w))
            sample_labels.append(num)
    # forward bias
W
wanghaoshuang 已提交
40
    sample_out = np.zeros(len(samples)).astype(np.float32)
W
wanghaoshuang 已提交
41 42
    if bias is not None:
        for i in range(len(samples)):
W
wanghaoshuang 已提交
43
            sample_out[i] = bias[samples[i][1]]
W
wanghaoshuang 已提交
44 45
    # forward weight
    for i in range(len(samples)):
W
wanghaoshuang 已提交
46
        sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]])
W
wanghaoshuang 已提交
47 48

    # forward activation
W
wanghaoshuang 已提交
49
    sample_out = 1.0 / (1.0 + np.exp(-sample_out))
W
wanghaoshuang 已提交
50 51 52 53
    # forward cost
    out = np.zeros(batch_size).astype(np.float32)
    b = 1.0 / num_classes * num_sample_class
    for i in range(len(samples)):
W
wanghaoshuang 已提交
54
        o = sample_out[i]
W
wanghaoshuang 已提交
55 56
        cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b))
        out[samples[i][0]] += cost * samples[i][3]
57 58 59
    return (out[:, np.newaxis],
            np.array(sample_out).reshape(batch_size,
                                         num_sample_class + num_true_class),
W
wanghaoshuang 已提交
60 61 62 63 64
            np.array(sample_labels).reshape(batch_size,
                                            num_sample_class + num_true_class))


class TestNCE(OpTest):
65

W
wanghaoshuang 已提交
66
    def generate_data(self, dim, batch_size, num_classes, num_true_class,
67
                      num_neg_samples, is_sparse):
W
wanghaoshuang 已提交
68 69 70 71
        input = np.random.randn(batch_size, dim).astype(np.float32)
        weight = np.random.randn(num_classes, dim).astype(np.float32)
        bias = np.random.randn(num_classes).astype(np.float32)
        sample_weight = np.random.randn(batch_size).astype(np.float32)
P
peizhilin 已提交
72 73
        labels = np.random.randint(0, num_classes,
                                   (batch_size, num_true_class)).astype("int64")
W
wanghaoshuang 已提交
74
        self.attrs = {
W
wanghaoshuang 已提交
75 76
            'num_total_classes': num_classes,
            'num_neg_samples': num_neg_samples,
77 78
            'custom_neg_classes': list(range(num_neg_samples)),
            'seed': 0,
79
            'sampler': 0,
P
pangyoki 已提交
80 81
            'is_sparse': is_sparse,
            'is_test': self.is_test
W
wanghaoshuang 已提交
82 83
        }
        self.inputs = {
W
wanghaoshuang 已提交
84
            'Input': input,
W
wanghaoshuang 已提交
85
            'Label': labels,
W
wanghaoshuang 已提交
86 87
            'Weight': weight,
            'Bias': bias,
W
wanghaoshuang 已提交
88 89 90
            'SampleWeight': sample_weight
        }

P
pangyoki 已提交
91 92 93
    def set_is_test(self):
        self.is_test = False

W
wanghaoshuang 已提交
94
    def set_data(self):
Z
zhupengyang 已提交
95
        self.generate_data(5, 25, 100, 1, 2, False)
W
wanghaoshuang 已提交
96 97

    def compute(self):
W
wanghaoshuang 已提交
98 99
        out = nce(self.inputs['Input'], self.inputs['Weight'],
                  self.inputs['Bias'], self.inputs['SampleWeight'],
W
wanghaoshuang 已提交
100 101
                  self.inputs['Label'], self.attrs['num_total_classes'],
                  self.attrs['num_neg_samples'])
P
pangyoki 已提交
102 103 104 105 106 107 108 109
        if self.is_test:
            self.outputs = {'Cost': out[0]}
        else:
            self.outputs = {
                'Cost': out[0],
                'SampleLogits': out[1],
                'SampleLabels': out[2]
            }
W
wanghaoshuang 已提交
110 111 112

    def setUp(self):
        self.op_type = 'nce'
P
pangyoki 已提交
113
        self.set_is_test()
W
wanghaoshuang 已提交
114 115 116 117 118 119 120
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
121 122 123
        self.check_grad(["Input", "Weight", "Bias"],
                        "Cost",
                        max_relative_error=0.02)
W
wanghaoshuang 已提交
124 125


126
class TestNCECase1Tensor(TestNCE):
127

W
wanghaoshuang 已提交
128
    def set_data(self):
Z
zhupengyang 已提交
129
        self.generate_data(10, 20, 100, 2, 5, False)
130 131


P
pangyoki 已提交
132 133 134 135 136 137 138 139 140
class TestNCETensorIsTest(TestNCE):
    # if is_test = True, there's no need to calculate grad
    def set_is_test(self):
        self.is_test = True

    def test_check_grad(self):
        pass


141
class TestNCECase1SelectedRows(unittest.TestCase):
142

143 144 145 146 147 148 149 150 151 152 153
    def setUp(self):
        self.base_lr = 0.0001
        self.batch_size = 8

    @staticmethod
    def get_place():
        place = fluid.core.CPUPlace()
        return place

    @staticmethod
    def get_train_data(batch_size):
T
tianshuo78520a 已提交
154
        batches = []
155 156 157
        for i in range(batch_size):
            input = np.random.randn(batch_size, 10).astype(np.float32)
            labels = np.random.randint(0, 20, (batch_size, 1))
T
tianshuo78520a 已提交
158 159
            batches.append([input, labels])
        return batches
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    def get_optimizer(self):
        # SGD optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=self.base_lr)
        return optimizer

    def train_network(self, num_total_classes, num_neg_samples, sampler,
                      custom_dist, is_sparse):
        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='nce_w',
            initializer=initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 1],
            dtype='float32',
            name='nce_b',
            initializer=initializer.ConstantInitializer())

        cost = fluid.layers.nce(input=input,
                                label=label,
                                num_total_classes=num_total_classes,
                                sampler=sampler,
                                custom_dist=custom_dist,
                                sample_weight=None,
                                param_attr='nce_w',
                                bias_attr='nce_b',
                                seed=1,
                                num_neg_samples=num_neg_samples,
                                is_sparse=is_sparse)
193
        avg_cost = paddle.mean(cost)
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        # optimizer
        optimizer = self.get_optimizer()
        optimizer.minimize(avg_cost)

        return [avg_cost, [input, label]]

    def test_input_is_selected_rows(self):
        place = self.get_place()
        exe = fluid.Executor(place)

        data = self.get_train_data(self.batch_size)
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        rets = []
        # for dense
        dense_scope = fluid.core.Scope()
        dense_startup_program = fluid.framework.Program()
        dense_train_program = fluid.framework.Program()
        with fluid.scope_guard(dense_scope):
            with fluid.program_guard(dense_train_program,
                                     dense_startup_program):
                cost, feeds = self.train_network(20, 5, "custom_dist",
                                                 nid_freq_arr.tolist(), False)
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(dense_startup_program)
                loss_val = exe.run(dense_train_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[cost.name])
                rets.append(np.mean(loss_val))

        # for sparse
        sparse_scope = fluid.core.Scope()
        sparse_startup_program = fluid.framework.Program()
        sparse_train_program = fluid.framework.Program()
        with fluid.scope_guard(sparse_scope):
            with fluid.program_guard(sparse_train_program,
                                     sparse_startup_program):
                cost, feeds = self.train_network(20, 5, "custom_dist",
                                                 nid_freq_arr.tolist(), True)
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(sparse_startup_program)
                loss_val = exe.run(sparse_train_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[cost.name])
                rets.append(np.mean(loss_val))

        self.assertEqual(rets[0], rets[1])
W
wanghaoshuang 已提交
241 242


243
class TestNCE_OpError(unittest.TestCase):
244

245 246
    def test_errors(self):
        with program_guard(Program(), Program()):
247 248 249 250 251
            input1 = fluid.create_lod_tensor(np.array([0.0, 3.0, 2.0, 4.0]),
                                             [[1, 1, 2]], fluid.CPUPlace())
            label1 = fluid.layers.data(name='label1',
                                       shape=[-1, 4],
                                       dtype="int64")
252 253 254
            # the input(input) of nce layer must be Variable.
            self.assertRaises(TypeError, fluid.layers.nce, input1, label1, 5)

255 256 257 258 259
            input2 = fluid.layers.data(name='input2',
                                       shape=[-1, 4],
                                       dtype="float32")
            label2 = fluid.create_lod_tensor(np.array([0.0, 3.0, 2.0, 4.0]),
                                             [[1, 1, 2]], fluid.CPUPlace())
260 261 262
            # the input(label) of nce layer must be Variable.
            self.assertRaises(TypeError, fluid.layers.nce, input2, label2, 5)

263 264 265 266 267 268
            input3 = fluid.layers.data(name='input3',
                                       shape=[-1, 4],
                                       dtype="float16")
            label3 = fluid.layers.data(name='label3',
                                       shape=[-1, 1],
                                       dtype="int64")
269 270 271
            # the data type of input(input) must be float32 or float64.
            self.assertRaises(TypeError, fluid.layers.nce, input3, label3, 5)

272 273 274 275 276 277
            input4 = fluid.layers.data(name='input4',
                                       shape=[-1, 4],
                                       dtype="float32")
            label4 = fluid.layers.data(name='label4',
                                       shape=[-1, 1],
                                       dtype="int32")
278 279 280 281
            # the data type of input(label) must be int64.
            self.assertRaises(TypeError, fluid.layers.nce, input4, label4, 5)


282
class TestDygraphNCE_OpError(unittest.TestCase):
283

284 285 286
    def test_NCE_errors(self):
        with program_guard(Program(), Program()):
            nce = fluid.NCE(20, 5)
287 288 289 290 291
            input1 = fluid.create_lod_tensor(np.array([0.0, 3.0, 2.0, 4.0]),
                                             [[1, 1, 2]], fluid.CPUPlace())
            label1 = fluid.layers.data(name='label1',
                                       shape=[-1, 4],
                                       dtype="int64")
292 293 294
            # the input(input) of NCE layer must be Variable.
            self.assertRaises(TypeError, nce, input1, label1)

295 296 297 298 299
            input2 = fluid.layers.data(name='input2',
                                       shape=[-1, 4],
                                       dtype="float32")
            label2 = fluid.create_lod_tensor(np.array([0.0, 3.0, 2.0, 4.0]),
                                             [[1, 1, 2]], fluid.CPUPlace())
300 301 302
            # the input(label) of NCE layer must be Variable.
            self.assertRaises(TypeError, nce, input2, label2)

303 304 305 306 307 308
            input3 = fluid.layers.data(name='input3',
                                       shape=[-1, 4],
                                       dtype="float16")
            label3 = fluid.layers.data(name='label3',
                                       shape=[-1, 1],
                                       dtype="int64")
309 310 311
            # the data type of input(input) must be float32 or float64.
            self.assertRaises(TypeError, nce, input3, label3)

312 313 314 315 316 317
            input4 = fluid.layers.data(name='input4',
                                       shape=[-1, 4],
                                       dtype="float32")
            label4 = fluid.layers.data(name='label4',
                                       shape=[-1, 1],
                                       dtype="int32")
318 319 320
            # the data type of input(label) must be int64.
            self.assertRaises(TypeError, nce, input4, label4)

321 322 323 324 325 326
            input5 = fluid.layers.data(name='input5',
                                       shape=[-1, 4],
                                       dtype="float32")
            label5 = fluid.layers.data(name='label5',
                                       shape=[-1, 1],
                                       dtype="int64")
327 328 329 330 331 332
            sample_weight = fluid.create_lod_tensor(
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace())
            # the sample_weight of nce must be Variable or None.
            self.assertRaises(TypeError, nce, input5, label5, sample_weight)


W
wanghaoshuang 已提交
333 334
if __name__ == '__main__':
    unittest.main()