test_inference_model_io.py 17.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dzhwinter 已提交
15 16
import unittest

17
import os
18
import importlib
19
import tempfile
D
dzhwinter 已提交
20
import numpy as np
21
import paddle.fluid.core as core
22 23
import paddle.fluid as fluid
import warnings
24

25
import paddle
26 27 28
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
T
tangwei12 已提交
29
from paddle.fluid.compiler import CompiledProgram
30
from paddle.fluid.framework import Program, program_guard
31
from paddle.fluid.io import save_inference_model, load_inference_model, save_persistables
32

33
paddle.enable_static()
34 35


36
class InferModel(object):
37

38 39 40 41 42
    def __init__(self, list):
        self.program = list[0]
        self.feed_var_names = list[1]
        self.fetch_vars = list[2]

43

44
class TestBook(unittest.TestCase):
45

46
    def test_fit_line_inference_model(self):
47 48 49
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model")
        UNI_MODEL_DIR = os.path.join(root_path.name, "inference_model1")
50 51 52

        init_program = Program()
        program = Program()
53 54 55 56 57 58 59 60

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
61
            avg_cost = paddle.mean(cost)
62 63 64

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
65 66 67 68 69 70

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

71
        for i in range(100):
72 73
            tensor_x = np.array([[1, 1], [1, 2], [3, 4], [5,
                                                          2]]).astype("float32")
D
dzhwinter 已提交
74
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
75 76

            exe.run(program,
77 78 79 80
                    feed={
                        'x': tensor_x,
                        'y': tensor_y
                    },
81 82
                    fetch_list=[avg_cost])

83
        # Separated model and unified model
84
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
85 86 87 88 89 90
        save_inference_model(UNI_MODEL_DIR, ["x", "y"], [avg_cost], exe,
                             program, 'model', 'params')
        main_program = program.clone()._prune_with_input(
            feeded_var_names=["x", "y"], targets=[avg_cost])
        params_str = save_persistables(exe, None, main_program, None)

D
dzhwinter 已提交
91
        expected = exe.run(program,
92 93 94 95
                           feed={
                               'x': tensor_x,
                               'y': tensor_y
                           },
D
dzhwinter 已提交
96
                           fetch_list=[avg_cost])[0]
97

98
        importlib.reload(executor)  # reload to build a new scope
99

100
        model_0 = InferModel(load_inference_model(MODEL_DIR, exe))
101 102
        with open(os.path.join(UNI_MODEL_DIR, 'model'), "rb") as f:
            model_str = f.read()
103
        model_1 = InferModel(
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
            load_inference_model(None, exe, model_str, params_str))

        for model in [model_0, model_1]:
            outs = exe.run(model.program,
                           feed={
                               model.feed_var_names[0]: tensor_x,
                               model.feed_var_names[1]: tensor_y
                           },
                           fetch_list=model.fetch_vars)
            actual = outs[0]

            self.assertEqual(model.feed_var_names, ["x", "y"])
            self.assertEqual(len(model.fetch_vars), 1)
            print("fetch %s" % str(model.fetch_vars[0]))
            self.assertEqual(expected, actual)

120 121
        root_path.cleanup()

122 123
        self.assertRaises(ValueError, fluid.io.load_inference_model, None, exe,
                          model_str, None)
124 125


D
dzhwinter 已提交
126
class TestSaveInferenceModel(unittest.TestCase):
127

D
dzhwinter 已提交
128
    def test_save_inference_model(self):
129 130
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model2")
D
dzhwinter 已提交
131 132 133 134 135 136 137 138 139 140 141
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
142
            avg_cost = paddle.mean(cost)
D
dzhwinter 已提交
143 144 145 146 147

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

D
dzhwinter 已提交
148
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
149
        root_path.cleanup()
D
dzhwinter 已提交
150

151
    def test_save_inference_model_with_auc(self):
152 153
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model4")
154 155 156 157 158 159
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
160
            y = layers.data(name='y', shape=[1], dtype='int32')
161 162 163 164 165
            predict = fluid.layers.fc(input=x, size=2, act='softmax')
            acc = fluid.layers.accuracy(input=predict, label=y)
            auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                                  label=y)
            cost = fluid.layers.cross_entropy(input=predict, label=y)
166
            avg_cost = paddle.mean(x=cost)
167 168 169 170 171 172 173 174

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe,
                                 program)
175
            root_path.cleanup()
176 177 178 179
            expected_warn = "please ensure that you have set the auc states to zeros before saving inference model"
            self.assertTrue(len(w) > 0)
            self.assertTrue(expected_warn == str(w[0].message))

D
dzhwinter 已提交
180

T
tangwei12 已提交
181
class TestInstance(unittest.TestCase):
182

T
tangwei12 已提交
183
    def test_save_inference_model(self):
184 185
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model3")
T
tangwei12 已提交
186 187 188 189 190 191 192 193 194 195 196
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
197
            avg_cost = paddle.mean(cost)
T
tangwei12 已提交
198 199 200 201 202 203 204 205 206 207

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        # will print warning message

        cp_prog = CompiledProgram(program).with_data_parallel(
            loss_name=avg_cost.name)

C
chengduo 已提交
208
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog)
T
tangwei12 已提交
209 210
        self.assertRaises(TypeError, save_inference_model,
                          [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog])
211
        root_path.cleanup()
T
tangwei12 已提交
212 213


214
class TestSaveInferenceModelNew(unittest.TestCase):
215

216
    def test_save_and_load_inference_model(self):
217 218
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model5")
219 220 221 222 223 224 225 226 227 228 229
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
230
            avg_cost = paddle.mean(cost)
231 232 233 234 235 236 237 238 239 240

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
241
        for i in range(3):
242
            exe.run(program,
243 244 245 246
                    feed={
                        'x': tensor_x,
                        'y': tensor_y
                    },
247 248
                    fetch_list=[avg_cost])

249 250
        self.assertRaises(ValueError, paddle.static.save_inference_model, None,
                          ['x', 'y'], [avg_cost], exe)
251
        self.assertRaises(ValueError, paddle.static.save_inference_model,
252
                          MODEL_DIR + "/", [x, y], [avg_cost], exe)
253
        self.assertRaises(ValueError, paddle.static.save_inference_model,
254
                          MODEL_DIR, ['x', 'y'], [avg_cost], exe)
255
        self.assertRaises(ValueError, paddle.static.save_inference_model,
256
                          MODEL_DIR, 'x', [avg_cost], exe)
257
        self.assertRaises(ValueError, paddle.static.save_inference_model,
258
                          MODEL_DIR, [x, y], ['avg_cost'], exe)
259
        self.assertRaises(ValueError, paddle.static.save_inference_model,
260
                          MODEL_DIR, [x, y], 'avg_cost', exe)
261 262 263 264

        model_path = MODEL_DIR + "_isdir.pdmodel"
        os.makedirs(model_path)
        self.assertRaises(ValueError, paddle.static.save_inference_model,
265
                          MODEL_DIR + "_isdir", [x, y], [avg_cost], exe)
266 267 268 269 270
        os.rmdir(model_path)

        params_path = MODEL_DIR + "_isdir.pdmodel"
        os.makedirs(params_path)
        self.assertRaises(ValueError, paddle.static.save_inference_model,
271
                          MODEL_DIR + "_isdir", [x, y], [avg_cost], exe)
272 273
        os.rmdir(params_path)

274 275
        paddle.static.io.save_inference_model(MODEL_DIR, [x, y], [avg_cost],
                                              exe)
276 277 278 279 280

        self.assertTrue(os.path.exists(MODEL_DIR + ".pdmodel"))
        self.assertTrue(os.path.exists(MODEL_DIR + ".pdiparams"))

        expected = exe.run(program,
281 282 283 284
                           feed={
                               'x': tensor_x,
                               'y': tensor_y
                           },
285 286
                           fetch_list=[avg_cost])[0]

287
        importlib.reload(executor)  # reload to build a new scope
288

289 290
        self.assertRaises(ValueError, paddle.static.load_inference_model, None,
                          exe)
291
        self.assertRaises(ValueError, paddle.static.load_inference_model,
292
                          MODEL_DIR + "/", exe)
293
        self.assertRaises(ValueError, paddle.static.load_inference_model,
294
                          [MODEL_DIR], exe)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        self.assertRaises(ValueError,
                          paddle.static.load_inference_model,
                          MODEL_DIR,
                          exe,
                          pserver_endpoints=None)
        self.assertRaises(ValueError,
                          paddle.static.load_inference_model,
                          MODEL_DIR,
                          exe,
                          unsupported_param=None)
        self.assertRaises((TypeError, ValueError),
                          paddle.static.load_inference_model,
                          None,
                          exe,
                          model_filename="illegal",
                          params_filename="illegal")

        model = InferModel(paddle.static.io.load_inference_model(
            MODEL_DIR, exe))
314
        root_path.cleanup()
315 316 317 318 319 320 321 322 323 324 325 326

        outs = exe.run(model.program,
                       feed={
                           model.feed_var_names[0]: tensor_x,
                           model.feed_var_names[1]: tensor_y
                       },
                       fetch_list=model.fetch_vars)
        actual = outs[0]

        self.assertEqual(model.feed_var_names, ["x", "y"])
        self.assertEqual(len(model.fetch_vars), 1)
        self.assertEqual(expected, actual)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        # test save_to_file content type should be bytes
        self.assertRaises(ValueError, paddle.static.io.save_to_file, '', 123)
        # test _get_valid_program
        self.assertRaises(TypeError, paddle.static.io._get_valid_program, 0)
        p = Program()
        cp = CompiledProgram(p)
        paddle.static.io._get_valid_program(cp)
        self.assertTrue(paddle.static.io._get_valid_program(cp) is p)
        cp._program = None
        self.assertRaises(TypeError, paddle.static.io._get_valid_program, cp)

    def test_serialize_program_and_persistables(self):
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
350
            avg_cost = paddle.mean(cost)
351 352 353 354 355 356 357 358 359 360

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
361
        for i in range(3):
362
            exe.run(program,
363 364 365 366
                    feed={
                        'x': tensor_x,
                        'y': tensor_y
                    },
367
                    fetch_list=[avg_cost])
368

369 370 371 372 373 374 375 376 377 378 379
        # test if return type of serialize_program is bytes
        res1 = paddle.static.io.serialize_program([x, y], [avg_cost])
        self.assertTrue(isinstance(res1, bytes))
        # test if return type of serialize_persistables is bytes
        res2 = paddle.static.io.serialize_persistables([x, y], [avg_cost], exe)
        self.assertTrue(isinstance(res2, bytes))
        # test if variables in program is empty
        res = paddle.static.io._serialize_persistables(Program(), None)
        self.assertEqual(res, None)
        self.assertRaises(TypeError, paddle.static.io.deserialize_persistables,
                          None, None, None)
380

381 382 383 384 385 386 387 388 389 390 391 392
    def test_normalize_program(self):
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
393
            avg_cost = paddle.mean(cost)
394 395 396 397 398 399 400 401 402 403

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
404
        for i in range(3):
405
            exe.run(program,
406 407 408 409
                    feed={
                        'x': tensor_x,
                        'y': tensor_y
                    },
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
                    fetch_list=[avg_cost])

        # test if return type of serialize_program is bytes
        res = paddle.static.normalize_program(program, [x, y], [avg_cost])
        self.assertTrue(isinstance(res, Program))
        # test program type
        self.assertRaises(TypeError, paddle.static.normalize_program, None,
                          [x, y], [avg_cost])
        # test feed_vars type
        self.assertRaises(TypeError, paddle.static.normalize_program, program,
                          'x', [avg_cost])
        # test fetch_vars type
        self.assertRaises(TypeError, paddle.static.normalize_program, program,
                          [x, y], 'avg_cost')

425

426
class TestLoadInferenceModelError(unittest.TestCase):
427

428 429 430 431 432 433 434
    def test_load_model_not_exist(self):
        place = core.CPUPlace()
        exe = executor.Executor(place)
        self.assertRaises(ValueError, load_inference_model,
                          './test_not_exist_dir', exe)


435 436
if __name__ == '__main__':
    unittest.main()