test_image_classification_layer.py 3.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18 19
import paddle.fluid as fluid
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program
Q
Qiao Longfei 已提交
20 21


22
def conv_block(input, num_filter, groups, dropouts):
23 24 25 26 27 28 29 30 31
    return nets.img_conv_group(input=input,
                               pool_size=2,
                               pool_stride=2,
                               conv_num_filter=[num_filter] * groups,
                               conv_filter_size=3,
                               conv_act='relu',
                               conv_with_batchnorm=True,
                               conv_batchnorm_drop_rate=dropouts,
                               pool_type='max')
Q
Qiao Longfei 已提交
32 33 34


class TestLayer(unittest.TestCase):
35

Q
Qiao Longfei 已提交
36
    def test_batch_norm_layer(self):
37 38
        main_program = Program()
        startup_program = Program()
39
        with fluid.program_guard(main_program, startup_program):
40 41 42
            images = fluid.layers.data(name='pixel',
                                       shape=[3, 48, 48],
                                       dtype='float32')
43 44 45
            hidden1 = fluid.layers.batch_norm(input=images)
            hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu')
            fluid.layers.batch_norm(input=hidden2)
Q
Qiao Longfei 已提交
46

47
        print(str(main_program))
Q
Qiao Longfei 已提交
48 49

    def test_dropout_layer(self):
50 51
        main_program = Program()
        startup_program = Program()
52
        with fluid.program_guard(main_program, startup_program):
53 54 55
            images = fluid.layers.data(name='pixel',
                                       shape=[3, 48, 48],
                                       dtype='float32')
56
            fluid.layers.dropout(x=images, dropout_prob=0.5)
Q
Qiao Longfei 已提交
57

58
        print(str(main_program))
Q
Qiao Longfei 已提交
59 60

    def test_img_conv_group(self):
61 62
        main_program = Program()
        startup_program = Program()
Q
Qiao Longfei 已提交
63

64
        with fluid.program_guard(main_program, startup_program):
65 66 67
            images = fluid.layers.data(name='pixel',
                                       shape=[3, 48, 48],
                                       dtype='float32')
68 69
            conv1 = conv_block(images, 64, 2, [0.3, 0])
            conv_block(conv1, 256, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
70

71
        print(str(main_program))
Q
Qiao Longfei 已提交
72

Q
Qiao Longfei 已提交
73
    def test_elementwise_add_with_act(self):
74 75
        main_program = Program()
        startup_program = Program()
76
        with fluid.program_guard(main_program, startup_program):
77 78 79 80 81 82
            image1 = fluid.layers.data(name='pixel1',
                                       shape=[3, 48, 48],
                                       dtype='float32')
            image2 = fluid.layers.data(name='pixel2',
                                       shape=[3, 48, 48],
                                       dtype='float32')
83 84
            fluid.layers.elementwise_add(x=image1, y=image2, act='relu')
        print(main_program)
Q
Qiao Longfei 已提交
85

Q
Qiao Longfei 已提交
86 87 88

if __name__ == '__main__':
    unittest.main()