test_flip.py 6.9 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest
21 22 23
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
W
Wilber 已提交
24 25 26 27 28 29 30 31 32


class TestFlipOp_API(unittest.TestCase):
    """Test flip api."""

    def test_static_graph(self):
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
Y
yaoxuefeng 已提交
33
            axis = [0]
W
Wilber 已提交
34
            input = fluid.data(name='input', dtype='float32', shape=[2, 3])
Y
yaoxuefeng 已提交
35
            output = paddle.flip(input, axis)
R
Roc 已提交
36 37
            output = paddle.flip(output, -1)
            output = output.flip(0)
W
Wilber 已提交
38 39 40 41 42 43 44 45 46 47
            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup_program)
            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            res = exe.run(train_program,
                          feed={'input': img},
                          fetch_list=[output])
            out_np = np.array(res[0])
R
Roc 已提交
48
            out_ref = np.array([[3, 2, 1], [6, 5, 4]]).astype(np.float32)
49 50
            self.assertTrue((out_np == out_ref).all(),
                            msg='flip output is wrong, out =' + str(out_np))
W
Wilber 已提交
51 52 53 54 55 56

    def test_dygraph(self):
        img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
        with fluid.dygraph.guard():
            inputs = fluid.dygraph.to_variable(img)
            ret = paddle.flip(inputs, [0])
R
Roc 已提交
57 58 59 60
            ret = ret.flip(0)
            ret = paddle.flip(ret, 1)
            out_ref = np.array([[3, 2, 1], [6, 5, 4]]).astype(np.float32)

W
Wilber 已提交
61 62 63 64 65 66
            self.assertTrue(
                (ret.numpy() == out_ref).all(),
                msg='flip output is wrong, out =' + str(ret.numpy()))


class TestFlipOp(OpTest):
67

W
Wilber 已提交
68 69
    def setUp(self):
        self.op_type = 'flip'
H
hong 已提交
70
        self.python_api = paddle.tensor.flip
W
Wilber 已提交
71 72 73 74 75 76
        self.init_test_case()
        self.inputs = {'X': np.random.random(self.in_shape).astype('float64')}
        self.init_attrs()
        self.outputs = {'Out': self.calc_ref_res()}

    def init_attrs(self):
Y
yaoxuefeng 已提交
77
        self.attrs = {"axis": self.axis}
W
Wilber 已提交
78 79

    def test_check_output(self):
H
hong 已提交
80
        self.check_output(check_eager=True)
W
Wilber 已提交
81 82

    def test_check_grad(self):
H
hong 已提交
83
        self.check_grad(["X"], "Out", check_eager=True)
W
Wilber 已提交
84 85 86

    def init_test_case(self):
        self.in_shape = (6, 4, 2, 3)
Y
yaoxuefeng 已提交
87
        self.axis = [0, 1]
W
Wilber 已提交
88 89 90

    def calc_ref_res(self):
        res = self.inputs['X']
R
Roc 已提交
91 92
        if isinstance(self.axis, int):
            return np.flip(res, self.axis)
Y
yaoxuefeng 已提交
93
        for axis in self.axis:
W
Wilber 已提交
94 95 96 97 98
            res = np.flip(res, axis)
        return res


class TestFlipOpAxis1(TestFlipOp):
99

W
Wilber 已提交
100 101
    def init_test_case(self):
        self.in_shape = (2, 4, 4)
Y
yaoxuefeng 已提交
102
        self.axis = [0]
W
Wilber 已提交
103 104 105


class TestFlipOpAxis2(TestFlipOp):
106

W
Wilber 已提交
107 108
    def init_test_case(self):
        self.in_shape = (4, 4, 6, 3)
Y
yaoxuefeng 已提交
109
        self.axis = [0, 2]
W
Wilber 已提交
110 111 112


class TestFlipOpAxis3(TestFlipOp):
113

W
Wilber 已提交
114 115
    def init_test_case(self):
        self.in_shape = (4, 3, 1)
Y
yaoxuefeng 已提交
116
        self.axis = [0, 1, 2]
W
Wilber 已提交
117 118 119


class TestFlipOpAxis4(TestFlipOp):
120

W
Wilber 已提交
121 122
    def init_test_case(self):
        self.in_shape = (6, 4, 2, 2)
Y
yaoxuefeng 已提交
123 124 125 126
        self.axis = [0, 1, 2, 3]


class TestFlipOpEmptyAxis(TestFlipOp):
127

Y
yaoxuefeng 已提交
128 129 130 131 132 133
    def init_test_case(self):
        self.in_shape = (6, 4, 2, 2)
        self.axis = []


class TestFlipOpNegAxis(TestFlipOp):
134

Y
yaoxuefeng 已提交
135 136 137
    def init_test_case(self):
        self.in_shape = (6, 4, 2, 2)
        self.axis = [-1]
W
Wilber 已提交
138 139


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
class TestFlipDoubleGradCheck(unittest.TestCase):

    def flip_wrapper(self, x):
        return paddle.flip(x[0], [0, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 2, 2], False, dtype)
        data.persistable = True
        out = paddle.flip(data, [0, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.flip_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestFlipTripleGradCheck(unittest.TestCase):

    def flip_wrapper(self, x):
        return paddle.flip(x[0], [0, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 2, 2], False, dtype)
        data.persistable = True
        out = paddle.flip(data, [0, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.flip_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


W
Wilber 已提交
214
if __name__ == "__main__":
H
hong 已提交
215
    paddle.enable_static()
W
Wilber 已提交
216
    unittest.main()