test_fleet_unitaccessor.py 3.6 KB
Newer Older
X
xujiaqi01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test fleet."""

import os
import unittest


class TestFleet1(unittest.TestCase):
    """
    Test cases for fleet minimize.
    """

    def setUp(self):
        """Set up, set envs."""
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001"

    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
34
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
X
xujiaqi01 已提交
35
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
1
123malin 已提交
36

X
xujiaqi01 已提交
37 38 39 40 41 42 43
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
44
        #role_maker.generate_role()
X
xujiaqi01 已提交
45 46
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
47
        #fleet.init(role_maker)
X
xujiaqi01 已提交
48 49 50 51 52
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
53
                                     dtype="int64", lod_level=1, append_batch_size=False)
X
xujiaqi01 已提交
54
            emb = fluid.layers.embedding(input=show, size=[1, 1], \
55 56
                                         is_sparse=True, is_distributed=True, \
                                         param_attr=fluid.ParamAttr(name="embedding"))
X
xujiaqi01 已提交
57 58
            fc = fluid.layers.fc(input=emb, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
59
                                      dtype="int64", lod_level=1, append_batch_size=False)
X
xujiaqi01 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)

        strategy = {}
        strategy["embedding"] = {}
        strategy["embedding"]["sparse_accessor_class"] = "DownpourUnitAccessor"
        strategy["embedding"]["embed_sparse_optimizer"] = "naive"
        try:
            adam1 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam1 = fleet.distributed_optimizer(adam1, strategy=strategy)
            adam1.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adagrad"
            adam2 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam2 = fleet.distributed_optimizer(adam2, strategy=strategy)
            adam2.minimize([cost], [scope])

            strategy["embedding"]["embed_sparse_optimizer"] = "adam"
            adam3 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam3 = fleet.distributed_optimizer(adam3, strategy=strategy)
            adam3.minimize([cost], [scope])
        except:
            print("do not support pslib test, skip")
            return


if __name__ == "__main__":
    unittest.main()