test_eager_run_program.py 5.6 KB
Newer Older
0
0x45f 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
0
0x45f 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
0
0x45f 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
0
0x45f 已提交
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
17
from paddle import _legacy_C_ops
J
Jiabin Yang 已提交
18
from paddle.fluid.framework import _test_eager_guard, Variable, _in_legacy_dygraph
0
0x45f 已提交
19 20
from paddle.fluid import core
from paddle.fluid.layers.utils import _hash_with_id
21 22
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.executor import _is_enable_standalone_executor, _is_dy2st_enable_standalone_executor
0
0x45f 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

import unittest


def _append_backward_desc(main_program, outs):
    # make sure all status of is_test are False in train mode.
    program = main_program.clone()
    targets = []
    for out in outs:
        if isinstance(out, Variable):
            targets.append(program.global_block().var(out.name))

    if targets:
        paddle.fluid.backward.gradients(targets=targets, inputs=[])

    return program


# def _set_grad_type(params, train_program):
#     # NOTE: if user set sparse gradient mode, the param's gradient
#     # will be SelectedRows, not LoDTensor. But tracer will just
#     # set param grad VarBase by forward VarBase(LoDTensor)
#     # If we don't change grad_var type here, RunProgramOp need
#     # transform SelectedRows to LoDTensor forcibly, it may not
#     # be user wanted result.
#     for param in params:
#         grad_name = param.name + core.grad_var_suffix()
#         grad_var = train_program.desc.block(0).find_var(
51
#             grad_name.encode())
0
0x45f 已提交
52 53 54 55 56 57 58 59 60 61
#         # NOTE: cannot find var desc maybe no problem, such as in batch_norm
#         if grad_var is None:
#             continue
#         param._set_grad_type(grad_var.type())


def _create_out(var):
    assert isinstance(var, Variable)
    var_desc = var.desc
    varbase = None
J
Jiabin Yang 已提交
62
    if _in_legacy_dygraph():
63
        var_base = core.VarBase(var_desc.dtype(), var_desc.shape(),
0
0x45f 已提交
64 65
                                var_desc.name(), var_desc.type(), False)
    else:
66
        var_base = core.eager.Tensor(var_desc.dtype(), var_desc.shape(),
0
0x45f 已提交
67 68 69 70
                                     var_desc.name(), var_desc.type(), False)
    return var_base


71 72 73 74 75 76 77 78 79 80 81 82
@switch_to_static_graph
def _add_build_strategy_for(input_program, start_op_index, end_op_index):
    compiled_program = paddle.static.CompiledProgram(
        core.Graph(input_program.desc, start_op_index, end_op_index),
        build_strategy=paddle.static.BuildStrategy())
    compiled_program._compile(core.Scope(),
                              paddle.framework._current_expected_place())
    ir_graph = paddle.fluid.framework.IrGraph(compiled_program._graph)
    builded_program = ir_graph.to_program()
    return builded_program


0
0x45f 已提交
83
class TestRunProgram(unittest.TestCase):
84

0
0x45f 已提交
85 86 87 88 89 90 91 92 93 94 95 96
    def test_eager(self):
        paddle.set_device('cpu')
        paddle.enable_static()
        # step 1: construct program
        x = paddle.static.data(shape=[2, 4], name='x')
        x.stop_gradient = False
        y = paddle.static.data(shape=[4, 2], name='y')
        y.stop_gradient = False
        out = paddle.matmul(x, y)

        main_program = paddle.static.default_main_program()
        program = _append_backward_desc(main_program, [out])
97 98 99 100 101 102 103
        forward_program = _add_build_strategy_for(
            program, 0,
            main_program.desc.block(0).op_size())
        backward_program = _add_build_strategy_for(
            program,
            main_program.desc.block(0).op_size() + 2,
            program.desc.block(0).op_size())
0
0x45f 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

        paddle.disable_static('cpu')
        # step 2: call run_program in eager mode
        with _test_eager_guard():
            x_t = paddle.ones([2, 4])
            x_t.name = "x"
            x_t.stop_gradient = False
            y_t = paddle.ones([4, 2])
            y_t.name = "y"
            y_t.stop_gradient = False

            fake_var = paddle.zeros([1])
            fake_var.name = 'Fake_var'

            out_t = _create_out(out)

            scope = core.Scope()
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
            attrs = [
                'global_block',
                program.desc.block(0), 'start_op_index', 0, 'end_op_index',
                main_program.desc.block(0).op_size(), 'is_test', False,
                'program_id',
                _hash_with_id(program)
            ]

            use_interpretorcore = _is_enable_standalone_executor(
            ) and _is_dy2st_enable_standalone_executor()
            attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                attrs.extend(
                    ('forward_global_block', forward_program.desc.block(0),
                     'backward_global_block', backward_program.desc.block(0)))
0
0x45f 已提交
136

137 138
            _legacy_C_ops.run_program([x_t, y_t], [fake_var], [out_t], [scope],
                                      [fake_var], None, *attrs)
0
0x45f 已提交
139 140 141 142

            loss = paddle.mean(out_t)
            loss.backward()

143 144 145 146 147
            np.testing.assert_array_equal(np.ones([2, 2]) * 4, out_t.numpy())
            np.testing.assert_array_equal(
                np.ones([2, 4]) * 0.5, x_t.grad.numpy())
            np.testing.assert_array_equal(
                np.ones([4, 2]) * 0.5, y_t.grad.numpy())
0
0x45f 已提交
148 149 150 151


if __name__ == '__main__':
    unittest.main()