test_collective_api_base.py 24.8 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import os
import sys
import subprocess
import pickle
21
import tempfile
22
from contextlib import closing
23
import paddle
24 25
import paddle.fluid as fluid
from paddle.fluid import core
26
from paddle_bfloat import bfloat16
27 28


29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def create_bool_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.choice([True, False], size=shape)
    return data


def create_float_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.random(shape).astype(dtype)
    return data


def create_int_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.randint(0, high=100, size=shape).astype(dtype)
    return data


def create_complex_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.random(shape).astype(dtype)
    data.imag = np.random.random(shape)
    return data


def create_pylist_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
61 62
    # Generate random shape test case for xxx_object api
    shape = np.random.randint(0, high=100, size=(2)).tolist()
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    data = np.random.random(shape).tolist()
    return data


def create_pydict_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
    key = [i for i in range(0, shape[0])]
    value = np.random.random(shape).tolist()
    data = dict(zip(key, value))
    return data


def create_test_data(shape=None, dtype=None, seed=None):
    assert shape, "Shape should be specified"
    if dtype == "float32" or dtype == "float16" or dtype == "float64":
        return create_float_test_data(shape=shape, dtype=dtype, seed=seed)
80 81 82
    elif dtype == "bfloat16":
        # since numpy does not support bfloat16 yet, use `paddle_bfloat` to replace
        return create_float_test_data(shape=shape, dtype=bfloat16, seed=seed)
83 84 85 86 87 88 89 90 91 92 93 94 95 96
    elif dtype == "bool":
        return create_bool_test_data(shape=shape, seed=seed)
    elif dtype == "int32" or dtype == "int64" or dtype == "int8" or dtype == "uint8":
        return create_int_test_data(shape=shape, dtype=dtype, seed=seed)
    elif dtype == "complex64" or dtype == "complex128":
        return create_complex_test_data(shape=shape, dtype=dtype, seed=seed)
    elif dtype == "pylist":
        return create_pylist_test_data(shape=shape, seed=seed)
    elif dtype == "pydict":
        return create_pydict_test_data(shape=shape, seed=seed)
    else:
        raise NotImplementedError("Unsupported dtype for creating test data.")


97
class TestCollectiveAPIRunnerBase(object):
98

99 100 101 102 103 104
    def get_model(self,
                  train_prog,
                  startup_prog,
                  rank,
                  indata=None,
                  dtype=None):
105 106 107 108 109 110 111 112 113 114
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
115
        paddle.distributed.init_parallel_env()
116 117 118 119
        if args['backend'] == 'nccl':
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
120 121 122
        elif args['backend'] == 'bkcl':
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
123 124
        else:
            place = fluid.CPUPlace()
125 126 127
        indata = create_test_data(shape=(10, 1000),
                                  dtype=args["dtype"],
                                  seed=os.getpid())
L
lilong12 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140
        if args['static_mode']:
            result = self.get_model(train_prog, startup_prog, rank)
            exe = fluid.Executor(place)
            exe.run(startup_prog)
            fetch_list = []
            for elem in result:
                fetch_list.append(elem.name)
            out = exe.run(train_prog,
                          feed={'tindata': indata},
                          fetch_list=fetch_list)
        else:
            out = self.get_model(train_prog, startup_prog, rank, indata)
            #print(out, sys.stderr)
T
tianshuo78520a 已提交
141
        sys.stdout.buffer.write(pickle.dumps(out))
142 143 144 145 146 147 148 149 150 151 152 153


def runtime_main(test_class, col_type):
    args = {}
    model = test_class()
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    args["backend"] = os.getenv("BACKEND")
    args["path_id"] = int(os.getenv("PATH_ID"))
L
lilong12 已提交
154
    args["static_mode"] = int(os.getenv("STATIC_MODE"))
155
    args["dtype"] = os.getenv("DTYPE")
156 157 158 159 160 161 162 163
    model.run_trainer(args)


import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
164

165 166 167 168 169 170 171
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

172 173
        self.temp_dir = tempfile.TemporaryDirectory()

174 175 176 177 178 179 180 181 182
        # NOTE: this is a hack to get int format nccl version, like 2134
        # if current platform is not linux, version number will be 0
        nccl_version_str = subprocess.check_output(
            r"ldconfig -v | grep 'libnccl.so' | tail -n1 | sed -r 's/^.*\.so\.//'",
            stderr=subprocess.DEVNULL,
            shell=True).decode('utf-8')
        self._nccl_version = int("".join(
            nccl_version_str.split("."))) if nccl_version_str else 0

183 184 185
    def tearDown(self):
        self.temp_dir.cleanup()

186
    def _find_free_port(self):
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        if core.is_compiled_with_cuda():
            env0 = {
                "FLAGS_selected_gpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_gpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
        elif core.is_compiled_with_xpu():
            env0 = {
                "FLAGS_selected_xpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_xpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
236 237 238
        #update environment
        env0.update(envs)
        env1.update(envs)
239 240 241 242
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd = "%s -m coverage run --branch -p %s"
        else:
            tr_cmd = "%s %s"
243 244
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
245 246 247 248 249 250
        path0 = os.path.join(self.temp_dir.name,
                             "/tmp/tr0_err_%d.log" % os.getpid())
        path1 = os.path.join(self.temp_dir.name,
                             "/tmp/tr1_err_%d.log" % os.getpid())
        tr0_pipe = open(path0, "w")
        tr1_pipe = open(path1, "w")
251 252 253 254 255 256 257 258 259 260
        #print(tr0_cmd)
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)

        tr1_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
261 262 263 264 265 266 267 268

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
269
        with open(path0, "r") as f:
270
            sys.stderr.write('trainer 0 stderr file: %s\n' % f.read())
271
        with open(path1, "r") as f:
272
            sys.stderr.write('trainer 1 stderr file: %s\n' % f.read())
273 274 275 276 277 278 279 280
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         backend="nccl",
                         path_id="0",
L
lilong12 已提交
281
                         static_mode="1",
282
                         check_error_log=False,
283
                         need_envs={},
284 285
                         eager_mode=True,
                         dtype=None):
286 287 288 289
        if backend == "nccl" or backend == "bkcl":
            with_gloo = '0'
        else:
            with_gloo = '1'
290
        required_envs = os.environ.copy()
291
        dtype = "float32" if dtype is None else dtype
292
        additional_envs = {
293
            "NCCL_P2P_DISABLE": "1",
L
lilong12 已提交
294
            "STATIC_MODE": static_mode,
L
lilong12 已提交
295
            "PADDLE_WITH_GLOO": with_gloo,
296
            "PADDLE_DISTRI_BACKEND": backend,
297
            "BACKEND": backend,
298 299
            "PATH_ID": path_id,
            "DTYPE": dtype
300
        }
301
        required_envs.update(additional_envs)
302 303 304 305
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
306
            required_envs["GLOO_LOG_LEVEL"] = "TRACE"
307

308 309 310 311
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
                'NVIDIA_TF32_OVERRIDE', '')

312 313
        if eager_mode:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 1
314 315
        else:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 0
316

317 318
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(
            model_file, required_envs)
319 320
        input1 = create_test_data(shape=(10, 1000), dtype=dtype, seed=pid0)
        input2 = create_test_data(shape=(10, 1000), dtype=dtype, seed=pid1)
321 322 323 324
        # cast bfloat16 to float32 for numeric comparison
        if dtype == "bfloat16":
            input1 = input1.astype("float32")
            input2 = input2.astype("float32")
325 326 327 328
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
            tr_out0 = np.vstack((tr0_out[0], tr0_out[1]))
            tr_out1 = np.vstack((tr1_out[0], tr1_out[1]))
329 330
            np.testing.assert_allclose(tr_out0, need_result, rtol=1e-05)
            np.testing.assert_allclose(tr_out1, need_result, rtol=1e-05)
331 332 333 334
        if col_type == "allgather_object":
            need_result = [input1, input2]
            self.assertEqual(need_result, tr0_out)
            self.assertEqual(need_result, tr1_out)
335 336
        elif col_type == "broadcast":
            need_result = input2
337 338
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
339 340
        elif col_type == "reduce":
            need_result = input1 + input2
341 342 343 344 345 346 347
            # bfloat16 precision loss comes from truncating the last 16 bits of float32,
            # which sums (\sum_{i=-23}^{-8}2^{i}) to about 0.0078
            if dtype == "bfloat16":
                rtol = 8e-03
            else:
                rtol = 1e-05
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=rtol)
348 349 350 351
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
352 353
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
354 355 356 357
        elif col_type == "reduce_scatter":
            need_result = input1 + input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
358 359 360 361 362 363
            if dtype == "bfloat16":
                rtol = 8e-03
            else:
                rtol = 1e-05
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=rtol)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=rtol)
364 365
        elif col_type == "allreduce":
            need_result = input1 + input2
366 367 368 369 370 371
            if dtype == "bfloat16":
                rtol = 8e-03
                atol = 8e-03
            else:
                rtol = 1e-05
                atol = 1e-05
372 373
            np.testing.assert_allclose(tr0_out[0],
                                       need_result,
374 375
                                       rtol=rtol,
                                       atol=atol)
376 377
            np.testing.assert_allclose(tr1_out[0],
                                       need_result,
378 379
                                       rtol=rtol,
                                       atol=atol)
380 381 382
        elif col_type == "parallel_embedding":
            result_data = tr0_out[0]
            np.random.seed(2020)
383
            need_result = np.random.rand(12, 8)
384 385 386
            for i in range(result_data.shape[0]):
                for j in range(result_data.shape[1]):
                    data = result_data[i][j]
387 388 389
                    assert np.allclose(tr0_out[1][i][j],
                                       need_result[data],
                                       atol=1e-08)
390 391 392 393 394
        elif col_type == "row_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
395 396 397 398
            np.testing.assert_allclose(result_data,
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
399 400 401 402 403
        elif col_type == "column_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
404 405 406 407
            np.testing.assert_allclose(result_data,
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
408 409 410 411 412 413 414
        elif col_type == "alltoall":
            need_result1 = np.vstack((input1[0:input1.shape[0] // 2, :],
                                      input2[0:input2.shape[0] // 2, :]))
            need_result2 = np.vstack((input1[input1.shape[0] // 2:, :],
                                      input2[input2.shape[0] // 2:, :]))
            tr0_out = np.vstack(tr0_out)
            tr1_out = np.vstack(tr1_out)
415 416 417 418 419 420 421 422
            np.testing.assert_allclose(tr0_out,
                                       need_result1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out,
                                       need_result2,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
423 424
        elif col_type == "sendrecv":
            result_data = tr1_out[0]
425 426 427 428
            np.testing.assert_allclose(input1,
                                       result_data,
                                       rtol=1e-05,
                                       atol=1e-05)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        elif col_type == "global_gather":
            in_feat = 2
            n_expert = 2
            world_size = 2
            tot_expert = n_expert * world_size

            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr1 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, tot_expert):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]

            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr2 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, tot_expert):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            global_expert_count1 = np.zeros(tot_expert).astype("int")
            global_expert_count2 = np.zeros(tot_expert).astype("int")
            global_expert_count1[0:n_expert] = local_expert_count1[0:n_expert]
            global_expert_count1[n_expert:] = local_expert_count2[0:n_expert]
            global_expert_count2[0:n_expert] = local_expert_count1[n_expert:]
            global_expert_count2[n_expert:] = local_expert_count2[n_expert:]

            np.random.seed(pid0)
            fwd_expert_count = sum(global_expert_count1).astype("int")
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            np.random.seed(pid1)
            fwd_expert_count = sum(global_expert_count2).astype("int")
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            output1 = [[], [], [], []]
            output2 = [[], [], [], []]
            send_ptr1 = 0
            send_ptr2 = 0

            for i in range(n_expert):
                for j in range(world_size):
                    idx = j * n_expert + i
                    if j == 0:
                        output1_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx], :]
                        output1_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx], :]
                        output1[i].extend(output1_part1)
                        output1[i + n_expert].extend(output1_part2)
                    else:
                        output2_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx]]
                        output2_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx]]
                        output2[i].extend(output2_part1)
                        output2[i + n_expert].extend(output2_part2)
                    send_ptr1 = send_ptr1 + global_expert_count1[idx]
                    send_ptr2 = send_ptr2 + global_expert_count2[idx]
            result1 = []
            result2 = []
            for i in range(tot_expert):
                for arr in output1[i]:
                    if arr == []:
                        continue
                    result1.append(arr)
            for i in range(tot_expert):
                for arr in output2[i]:
                    if arr == []:
                        continue
                    result2.append(arr)
            if result1 == []:
                output1 = np.array([])
            else:
505 506
                output1 = np.concatenate(result1, axis=0).reshape(
                    sum(local_expert_count1), in_feat)
507 508 509
            if result2 == []:
                output2 = np.array([])
            else:
510 511
                output2 = np.concatenate(result2, axis=0).reshape(
                    sum(local_expert_count2), in_feat)
512 513 514 515 516 517 518

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

519 520 521 522 523 524 525 526
            np.testing.assert_allclose(tr0_out[0],
                                       output1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       output2,
                                       rtol=1e-05,
                                       atol=1e-05)
527
            if static_mode == 0:
528 529 530 531 532 533 534 535
                np.testing.assert_allclose(tr0_out[1],
                                           2 * local_input_buf1,
                                           rtol=1e-05,
                                           atol=1e-05)
                np.testing.assert_allclose(tr1_out[1],
                                           2 * local_input_buf2,
                                           rtol=1e-05,
                                           atol=1e-05)
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

        elif col_type == "global_scatter":
            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count1)
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr1 = np.ones(4, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, 4):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]
            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count2)
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr2 = np.ones(4, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, 4):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            output1 = []
            output2 = []
            for i in range(2):
                for j in range(2):
                    idx = j * 2 + i
                    if j == 0:
                        # send data to 0 card
                        output1.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output1.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
                    else:
                        output2.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output2.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
            if output1 == []:
                output1 = np.array([])
            else:
                output1 = np.concatenate(output1)
            if output2 == []:
                output2 = np.array([])
            else:
                output2 = np.concatenate(output2)

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

588 589 590 591 592 593 594 595
            np.testing.assert_allclose(tr0_out[0],
                                       output1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       output2,
                                       rtol=1e-05,
                                       atol=1e-05)
596
            if static_mode == 0:
597 598 599 600 601 602 603 604
                np.testing.assert_allclose(tr0_out[1],
                                           2 * local_input_buf1,
                                           rtol=1e-05,
                                           atol=1e-05)
                np.testing.assert_allclose(tr1_out[1],
                                           2 * local_input_buf2,
                                           rtol=1e-05,
                                           atol=1e-05)
605 606
        else:
            pass