test_calc_gradient.py 6.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiongkun 已提交
15
import paddle
16
import unittest
17
import numpy as np
18 19 20
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.backward import calc_gradient
21 22 23


class TestCalcGradient(unittest.TestCase):
24

25
    def test_calc_gradient(self):
26 27 28 29 30 31
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            x = layers.create_parameter(dtype="float32", shape=[5, 10])
            y = layers.create_parameter(dtype="float32", shape=[10, 8])
            mul_out = layers.mul(x=x, y=y)
32
            mean_out = paddle.mean(mul_out)
33 34
            a = calc_gradient(mean_out, mul_out)
            b = calc_gradient(mean_out, x)
35 36
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
37 38 39 40 41
        exe.run(startup)
        exe.run(main, feed={}, fetch_list=[a, b])


class TestDoubleGrad(unittest.TestCase):
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def test1(self):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            net = lambda x: x * x
            x = fluid.layers.create_parameter(
                name='x',
                shape=[1],
                dtype='float32',
                default_initializer=fluid.initializer.Constant(3))
            grad1, = fluid.gradients(net(x), x)  # 2x = 6
            z = net(x - grad1)
            grad2, = fluid.gradients(z, x)  # gradients( (x - 2x)^2) = 2x = 6

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup)
        out = exe.run(main, fetch_list=[grad1.name, grad2.name])
        self.assertEqual(6, out[0][0])
        self.assertEqual(6, out[1][0])

    def test2(self):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            x = fluid.layers.create_parameter(
                name='x',
                shape=[1],
                dtype='float32',
                default_initializer=fluid.initializer.Constant(1))
            y = x * x
            dx1, = fluid.gradients(y, x)
            z = dx1 * dx1 + y * y
            dx2, = fluid.gradients(z, x)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup)
        out, = exe.run(main, fetch_list=[dx2])
        self.assertEqual(12, out[0])
83 84


85
class TestGradientWithPrune(unittest.TestCase):
86

87
    def test_prune(self):
X
xiongkun 已提交
88 89 90 91 92 93
        with paddle.fluid.scope_guard(paddle.static.Scope()):
            x = fluid.data(name='x', shape=[3], dtype='float32')
            x.stop_gradient = False
            x1, x2, x3 = fluid.layers.split(x, dim=0, num_or_sections=3)
            y = x1 * 2
            x1_grad = fluid.gradients(y, x)
94

X
xiongkun 已提交
95 96 97 98 99 100
            exe = fluid.Executor(fluid.CPUPlace())
            main = fluid.default_main_program()
            exe.run(fluid.default_startup_program())
            out = exe.run(main,
                          feed={'x': np.ones([3]).astype('float32')},
                          fetch_list=[x1_grad])
101
            np.testing.assert_array_equal(out[0], [2.0, 0.0, 0.0])
102 103


104
class TestDoubleGradient(unittest.TestCase):
105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def build_program(self):
        start_prog = paddle.static.Program()
        main_prog = paddle.static.Program()

        with paddle.static.program_guard(main_prog, start_prog):
            x = paddle.static.data('x', shape=[2, 2])
            x.stop_gradient = False
            y = x * x

            v = paddle.ones([2, 2])
            v.stop_gradient = False

            grad_y = paddle.zeros_like(y)
            grad_y.stop_gradient = False
            grad_x = paddle.static.gradients(y, x, grad_y)
            # test with single targets
            jvp = paddle.static.gradients(grad_x, grad_y, v)

        return start_prog, main_prog, [grad_x, jvp]

    def test_calc_gradient(self):
127 128 129 130 131 132 133 134 135 136
        with paddle.fluid.scope_guard(paddle.static.Scope()):
            start_prog, main_prog, fetch_list = self.build_program()
            exe = paddle.static.Executor()
            exe.run(start_prog)
            ans = exe.run(main_prog,
                          feed={'x': np.ones([2, 2]).astype(np.float32)},
                          fetch_list=fetch_list)
            self.assertEqual(len(ans), 2)
            self.assertListEqual(ans[0].tolist(), [[0., 0.], [0., 0.]])
            self.assertListEqual(ans[1].tolist(), [[2., 2.], [2., 2.]])
137 138 139


class TestDoubleGradient2(unittest.TestCase):
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def build_program(self):
        start_prog = paddle.static.Program()
        main_prog = paddle.static.Program()

        with paddle.static.program_guard(main_prog, start_prog):
            x = paddle.static.data('x', shape=[2, 2])
            x.stop_gradient = False
            y = x * x
            y2 = y + x

            v = paddle.ones([2, 2])
            v.stop_gradient = False

            grad_y = paddle.zeros_like(y)
            grad_y.stop_gradient = False
            grad_x = paddle.static.gradients(y, x, grad_y)
            grad_x2 = paddle.static.gradients(y2, x, grad_y)
            # test with multi targets
            jvp = paddle.static.gradients([grad_x[0], grad_x2[0]], grad_y,
                                          [v, v])

        return start_prog, main_prog, [grad_x, jvp]

    def test_calc_gradient(self):
165 166 167 168 169 170 171 172 173 174
        with paddle.fluid.scope_guard(paddle.static.Scope()):
            start_prog, main_prog, fetch_list = self.build_program()
            exe = paddle.static.Executor()
            exe.run(start_prog)
            ans = exe.run(main_prog,
                          feed={'x': np.ones([2, 2]).astype(np.float32)},
                          fetch_list=fetch_list)
            self.assertEqual(len(ans), 2)
            self.assertListEqual(ans[0].tolist(), [[0., 0.], [0., 0.]])
            self.assertListEqual(ans[1].tolist(), [[5., 5.], [5., 5.]])
175 176


177 178
if __name__ == "__main__":
    unittest.main()