sequence_lod.py 57.6 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from .layer_function_generator import templatedoc
17
from ..framework import core, Variable, _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, convert_np_dtype_to_dtype_
18
from ..layer_helper import LayerHelper
19
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
20
from ..core import VarDesc
21
from paddle import _C_ops, _legacy_C_ops
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

__all__ = [
    'sequence_conv',
    'sequence_softmax',
    'sequence_pool',
    'sequence_concat',
    'sequence_first_step',
    'sequence_last_step',
    'sequence_slice',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'sequence_unpad',
    'sequence_reshape',
    'sequence_scatter',
    'sequence_enumerate',
    'sequence_mask',
    'sequence_reverse',
]


@templatedoc()
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=True,
                  padding_start=None,
                  bias_attr=None,
                  param_attr=None,
                  act=None,
                  name=None):
54
    r"""
S
swtkiwi 已提交
55

56
    Note:
57
    	Only receives LoDTensor as input. If your input is Tensor, please use conv2d Op.(fluid.layers.** :ref:`api_fluid_layers_conv2d` ).
58 59 60 61 62 63

    This operator receives input sequences with variable length and other convolutional
    configuration parameters(num_filters, filter_size) to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start` .
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we will illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, N] float LoDTensor, and for the sake of simplicity, we assume N=2.
            input.data = [[1, 1],
                          [2, 2],
                          [3, 3],
                          [4, 4]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0, 0, 1, 1, 2, 2],
                                      [1, 1, 2, 2, 3, 3],
                                      [2, 2, 3, 3, 0, 0],
                                      [0, 0, 4, 4, 0, 0]]

                It will be multiplied by the filter weight to get the final output.
                Assume num_filters = 3
                output.data = [[ 0.3234, -0.2334,  0.7433],
                               [ 0.5646,  0.9464, -0.1223],
                               [-0.1343,  0.5653,  0.4555],
                               [ 0.9954, -0.1234, -0.1234]]
                output.shape = [4, 3]     # 3 = num_filters
                output.lod = [[0, 3, 4]]  # Remain the same


    Args:
        input (Variable): LoDTensor with shape :math:`(M, K)`, where M is the total time-step of mini-batch
            and K is hidden_size of input. Only lod_level of 1 is supported. The data type should be float32 or
            float64.
        num_filters (int): the number of filters.
        filter_size (int): the height of filter. Specified filter width is not supported, the width is
            hidden_size by default. Default: 3.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
T
tianshuo78520a 已提交
116
            while training. Default: True.
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        padding_start (int): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence. Default: None.
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: LoDTensor with the same length as input. The data type is float32 or float64, which is same as input.

    Examples:

        .. code-block:: python

142 143
             import paddle
             paddle.enable_static()
144

145 146
             x = paddle.static.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
             x_conved = paddle.static.nn.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
147 148
    """

J
Jiabin Yang 已提交
149
    assert not _non_static_mode(), (
150
        "sequence layer is not supported in dygraph mode yet.")
151 152
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'sequence_conv')
153 154 155
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
156 157 158
    filter_param = helper.create_parameter(attr=helper.param_attr,
                                           shape=filter_shape,
                                           dtype=dtype)
159 160 161 162
    pre_bias = helper.create_variable_for_type_inference(dtype)
    if padding_start is None:
        padding_start = -int(filter_size // 2)

163 164 165 166 167 168 169 170 171 172 173
    helper.append_op(type='sequence_conv',
                     inputs={
                         'X': [input],
                         'Filter': [filter_param],
                     },
                     outputs={"Out": pre_bias},
                     attrs={
                         'contextStride': filter_stride,
                         'contextStart': padding_start,
                         'contextLength': filter_size,
                     })
174 175 176 177 178
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def sequence_softmax(input, use_cudnn=False, name=None):
179
    r"""
S
swtkiwi 已提交
180

181
    Note:
182
        The input type of the OP must be LoDTensor. For Tensor, use:** :ref:`api_fluid_layers_softmax`
183 184 185 186 187 188 189 190 191 192 193

    A LoD-tensor can be regarded as several sequences, and this op apply softmax algo on each sequence.
    The shape of input Tensor can be :math:`[N, 1]` or :math:`[N]`, where :math:`N`
    is the sum of the length of all sequences. Recommended usage: :math:`[N]`.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

194
    For example, for a LoD-Tensor with 6 sequences ([3, 2, 4, 1, 2, 3] - sequence length list in order),
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    the lod in the runtime is [[0, 3, 5, 9, 10, 12, 15]],
    then softmax will be computed among :math:`X[0:3,:],X[3:5,:],X[5:9,:],X[9:10,:],X[10:12,:],X[12:15,:]`,
    and :math:`N` turns out to be 15.

    .. code-block:: text

        *Case 1:

            Given:
                input.data = [0.7, 1, 0.6,
                              1.5, 1.1,
                              1.2, 0.2, 0.6, 1.9,
                              3.1,
                              2.5, 0.8,
                              0.1, 2.4, 1.3]
                input.lod = [[0, 3, 5, 9, 10, 12, 15]]
            then:
                 output.data = [0.30724832, 0.41474187, 0.2780098,
                                0.59868765, 0.40131235,
214
                                0.2544242, 0.09359743, 0.13963096, 0.5123474,
215 216 217
                                1.,
                                0.84553474, 0.15446526,
                                0.06995796, 0.69777346, 0.23226859]
218 219
                 output.lod = [[0, 3, 5, 9, 10, 12, 15]]

220 221

    Args:
222 223 224
        input (Variable):A LoDTensor with shape of  :math:`[N, 1]` or  :math:`[N]`, Recommended usage: :math:`[N]`.
                         Supported data types: float32, float64.
        use_cudnn (bool, optional): Use cudnn kernel or not. Effective only when the cudnn version of the paddle
225
                                    library is installed and GPU is used for training or reasoning. Default: False.
226
        name (str, optional): The default value is None. Normally there is no need for user to set this property.
227 228 229 230 231 232 233 234
                              For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: A LoD-Tensor which has the same shape and data type with input.

    Examples:

        .. code-block:: python
235

236 237
             import paddle
             paddle.enable_static()
238

239
             x = paddle.static.data(name='x', shape=[7, 1],
240
                              dtype='float32', lod_level=1)
241
             x_sequence_softmax_1 = paddle.static.nn.sequence_softmax(input=x)
242

243
             y = paddle.static.data(name='y', shape=[7],
244
                 dtype='float32', lod_level=1)
245
             x_sequence_softmax_2 = paddle.static.nn.sequence_softmax(input=y)
246
    """
J
Jiabin Yang 已提交
247
    assert not _non_static_mode(), (
248 249
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_softmax', **locals())
250 251
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'sequence_softmax')
252 253
    dtype = helper.input_dtype()
    softmax_out = helper.create_variable_for_type_inference(dtype)
254 255 256 257
    helper.append_op(type="sequence_softmax",
                     inputs={"X": input},
                     outputs={"Out": softmax_out},
                     attrs={"use_cudnn": use_cudnn})
258 259 260 261
    return softmax_out


def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
262
    r"""
S
swtkiwi 已提交
263

264
    Note:
265
        Only receives LoDTensor as input. If your input is Tensor, please use pool2d Op.(fluid.layers.** :ref:`api_fluid_layers_pool2d` ).
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    This operator only supports LoDTensor as input. It will apply specified pooling
    operation on the input LoDTensor. It pools features of all time-steps of each
    sequence at the last lod_level using :attr:`pool_type` mentioned in the parameters,
    such as sum, average, sqrt, etc.

    It supports six pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`
    - last:    :math:`Out[i] = X_{N_i}`
    - first:   :math:`Out[i]` = X_0

    where :math:`N_i` is the length of i-th input sequence.

    .. code-block:: text

        Case 1:
        input is a 1-level LoDTensor and pad_value = 0.0:
            input.lod = [[0, 2, 5, 7, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        output is LoDTensor:
            out.shape = [4, 1]
            with condition out.shape[0] == len(x.lod[-1]) == 4

        for different pool_type:
            average: out.data = [[2.], [4.], [3.], [0.0]], where 2.=(1. + 3.)/2, 4.=(2. + 4. + 6.)/3, 3.=(5. + 1.)/2
            sum    : out.data = [[4.], [12.], [6.], [0.0]], where 4.=1. + 3., 12.=2. + 4. + 6., 6.=5. + 1.
            sqrt   : out.data = [[2.82], [6.93], [4.24], [0.0]], where 2.82=(1. + 3.)/sqrt(2), 6.93=(2. + 4. + 6.)/sqrt(3), 4.24=(5. + 1.)/sqrt(2)
            max    : out.data = [[3.], [6.], [5.], [0.0]], where 3.=max(1., 3.), 6.=max(2., 4., 6.), 5.=max(5., 1.)
            last   : out.data = [[3.], [6.], [1.], [0.0]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.)
            first  : out.data = [[1.], [2.], [5.], [0.0]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)

            and all above [0.0] at last of out.data is padding data.

        Case 2:
        input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
        where 0 means empty sequence.
        The first sequence contains 2 subsequence with length info [1, 2];
        The last sequence contains 3 subsequence with length info [1, 0, 3].
            input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        If pool_typ = sum, it will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
        output is LoDTensor:
            out.shape= [5, 1]
            out.lod = [[0, 2, 2, 5]]
            where out.shape[0] == len(x.lod[-1]) == 5
            sum: out.data = [[1.], [5.], [4.], [0.0], [12.]]
            where 1.=1., 5.=3. + 2., 4.=4., 0.0=pad_value, 12.=6. + 5. + 1.

    Args:
323
        input (variable): LoDTensor with lod_level no more than 2. The data type should be float32 or float64.
324 325 326 327 328 329 330
        pool_type (str): The pooling type that supports average, sum, sqrt, max, last or first.
        is_test (bool): Only works when :attr:`pool_type` is max. If set False, a temporary Tenosr maxIndex is
            created to record the index information corresponding to the maximum value, which is used for backward
            gradient calculation in the training phase. Default: False.
        pad_value (float): Used to pad the pooling result for empty input sequence. Default: 0.0

    Returns:
331
        Variable: LoDTensor after pooling with data type float32 or float64.
332 333 334 335 336

    Examples:

        .. code-block:: python

337 338
            import paddle
            paddle.enable_static()
339

340 341 342 343 344 345 346
            x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
            avg_x = paddle.static.nn.sequence_pool(input=x, pool_type='average')
            sum_x = paddle.static.nn.sequence_pool(input=x, pool_type='sum')
            sqrt_x = paddle.static.nn.sequence_pool(input=x, pool_type='sqrt')
            max_x = paddle.static.nn.sequence_pool(input=x, pool_type='max')
            last_x = paddle.static.nn.sequence_pool(input=x, pool_type='last')
            first_x = paddle.static.nn.sequence_pool(input=x, pool_type='first')
347
    """
J
Jiabin Yang 已提交
348
    assert not _non_static_mode(), (
349
        "sequence layer is not supported in dygraph mode yet.")
350 351
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'sequence_pool')
352 353 354 355 356
    helper = LayerHelper('sequence_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)

357 358 359 360 361 362 363 364 365 366 367
    helper.append_op(type="sequence_pool",
                     inputs={"X": input},
                     outputs={
                         "Out": pool_out,
                         "MaxIndex": max_index
                     },
                     attrs={
                         "pooltype": pool_type.upper(),
                         "is_test": is_test,
                         "pad_value": pad_value
                     })
368 369 370 371 372 373 374 375 376 377 378 379

    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

    return pool_out


@templatedoc()
def sequence_concat(input, name=None):
    """
S
swtkiwi 已提交
380

381
    Note:
382
        Only receives LoDTensor as input. If your input is Tensor, please use concat Op.(fluid.layers.** :ref:`api_fluid_layers_concat` ).
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

    This operator only supports LoDTensor as input. It concatenates the multiple LoDTensor from input by the LoD information,
    and outputs the concatenated LoDTensor.

    .. code-block:: text

        input is a list of LoDTensor:
            input = [x1, x2]
        where:
            x1.lod = [[0, 3, 5]]
            x1.data = [[1], [2], [3], [4], [5]]
            x1.shape = [5, 1]

            x2.lod = [[0, 2, 4]]
            x2.data = [[6], [7], [8], [9]]
            x2.shape = [4, 1]
        and should satisfy: len(x1.lod[0]) == len(x2.lod[0])

        output is LoDTensor:
            out.lod = [[0, 3+2, 5+4]]
            out.data = [[1], [2], [3], [6], [7], [4], [5], [8], [9]]
            out.shape = [9, 1]

    Args:
        input(list of Variable): List of LoDTensor to be concatenated. The length of each LoDTensor should be same.
            The data type can be float32, float64 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Output the concatenated LoDTensor. The data type is same as input.

    Examples:
        .. code-block:: python

418 419 420 421 422 423
            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
            y = paddle.static.data(name='y', shape=[-1, 10], dtype='float32', lod_level=1)
            out = paddle.static.nn.sequence_concat(input=[x, y])
424
    """
J
Jiabin Yang 已提交
425
    assert not _non_static_mode(), (
426 427
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_concat', **locals())
428 429 430 431 432 433 434

    check_type(input, 'input', list, 'fluid.layers.sequence_concat')
    for i, input_x in enumerate(input):
        check_variable_and_dtype(input_x, 'input[' + str(i) + ']',
                                 ['int64', 'float32', 'float64'],
                                 'fluid.layers.sequence_concat')

435
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
436 437 438
    helper.append_op(type='sequence_concat',
                     inputs={'X': input},
                     outputs={'Out': [out]})
439 440 441 442 443
    return out


def sequence_first_step(input):
    """
S
swtkiwi 已提交
444

445
    Only supports LoDTensor as input. Given the input LoDTensor, it will
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    select first time-step feature of each sequence as output.

    .. code-block:: text

       Case 1:
        input is 1-level LoDTensor:
            input.lod = [[0, 2, 5, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        output is a LoDTensor:
            out.shape = [3, 1]
            out.shape[0] == len(x.lod[-1]) == 3
            out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)

        Case 2:
        input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
        where 0 means empty sequence.
        The first sequence contains 2 subsequence with length info [1, 2];
        The last sequence contains 3 subsequence with length info [1, 0, 3].
            input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
        output is a LoDTensor:
            out.shape= [5, 1]
            out.lod = [[0, 2, 2, 5]]
            out.shape[0] == len(x.lod[-1]) == 5
            out.data = [[1.], [3.], [4.], [0.0], [6.]]
            where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.)

    Args:
479
        input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32 or float64.
480 481

    Returns:
482
        Variable: LoDTensor consist of the sequence's first step vector. The data type is float32 or float64.
483 484 485 486 487

    Examples:

        .. code-block:: python

488 489 490 491 492
             import paddle
             paddle.enable_static()

             x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
             x_first_step = paddle.static.nn.sequence_first_step(input=x)
493
    """
494 495
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'sequence_first_step')
496 497 498 499 500
    return sequence_pool(input=input, pool_type="first")


def sequence_last_step(input):
    """
S
swtkiwi 已提交
501

502
    Only supports LoDTensor as input. Given the input LoDTensor, it will
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    select last time-step feature of each sequence as output.

    .. code-block:: text

        Case 1:
        input is 1-level LoDTensor:
            input.lod = [[0, 2, 5, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        output is a LoDTensor:
            out.shape = [3, 1]
            out.shape[0] == len(x.lod[-1]) == 3
            out.data = [[3.], [6.], [1.]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.)

        Case 2:
        input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
        where 0 means empty sequence.
        The first sequence contains 2 subsequence with length info [1, 2];
        The last sequence contains 3 subsequence with length info [1, 0, 3].
            input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
        output is a LoDTensor:
            out.shape= [5, 1]
            out.lod = [[0, 2, 2, 5]]
            out.shape[0] == len(x.lod[-1]) == 5
            out.data = [[1.], [2.], [4.], [0.0], [1.]]
            where 1.=last(1.), 2.=last(3., 2.), 4.=last(4.), 0.0 = pad_value, 1=last(6., 5., 1.)


    Args:
        input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32.

    Returns:
        Variable: LoDTensor consist of the sequence's last step vector. The data type is float32.

    Examples:

        .. code-block:: python

546 547
             import paddle
             paddle.enable_static()
548

549 550
             x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
             x_last_step = paddle.static.nn.sequence_last_step(input=x)
551
    """
552 553
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'sequence_last_step')
554 555 556 557 558
    return sequence_pool(input=input, pool_type="last")


def sequence_slice(input, offset, length, name=None):
    """
S
swtkiwi 已提交
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text

              - Case:

            Given the input Variable **input**:

                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),

            with offset.data = [[0], [1]] and length.data = [[2], [1]],

            the output Variable will be

                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).

    Note:
          The first dimension size of **input**, **offset** and **length**
          should be equal. The **offset** should start from 0.

    Args:
        input(Variable): LoDTensor, The input Variable which consists of the complete
591 592
                         sequences.The data type can be float32, float64, int32 or int64
        offset(Variable): LoDTensor, The offset to slice each sequence. The data
593
                         type is int32 or int64.
594
        length(Variable): LoDTensor, The length of each subsequence. The data
595 596 597 598 599 600 601 602 603 604 605 606
                         type is int32 or int64.
        name(str|None): The default value is None.  Normally there is no need
                        for user to set this property.  For more information,
                        please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output subsequences.

    Examples:

        .. code-block:: python

607 608
             import paddle
             paddle.enable_static()
609

610
             import numpy as np
611
             seqs = paddle.static.data(name='x', shape=[10, 5],
612
                              dtype='float32', lod_level=1)
613 614 615
             offset = paddle.assign(np.array([[0, 1]]).astype("int32"))
             length = paddle.assign(np.array([[2, 1]]).astype("int32"))
             subseqs = paddle.static.nn.sequence_slice(input=seqs, offset=offset,
616 617
                                                   length=length)
    """
J
Jiabin Yang 已提交
618
    assert not _non_static_mode(), (
619 620
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper("sequence_slice", **locals())
621 622 623 624 625 626 627 628 629

    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'sequence_slice')
    check_variable_and_dtype(offset, 'offset', ['int32', 'int64'],
                             'sequence_slice')
    check_variable_and_dtype(length, 'length', ['int32', 'int64'],
                             'sequence_slice')

630 631 632 633 634 635
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

636 637 638 639 640 641 642
    helper.append_op(type="sequence_slice",
                     inputs={
                         "X": input,
                         "Offset": offset,
                         "Length": length
                     },
                     outputs={"Out": out})
643 644 645 646 647

    return out


def sequence_expand(x, y, ref_level=-1, name=None):
648
    r"""
S
swtkiwi 已提交
649 650

        Sequence Expand Layer. This layer will expand the input variable ``x`` \
651 652 653 654 655 656
        according to specified level ``ref_level`` lod of ``y``. Please note that \
        the lod level of ``x`` is at most 1. If the lod level of ``x`` is 1, than \
        the size of lod of ``x`` must be equal to the length of ``ref_level`` lod \
        of ``y``. If the lod level of ``x`` is 0, then the first dim of ``x`` should \
        be equal to the size of ``ref_level`` of ``y``. The rank of **x** is at least 2. \
        When rank of ``x`` is greater than 2, then it would be viewed as a 2-D tensor.
657

658
    Note:
659

660
        Please note that the input ``x`` should be LodTensor or Tensor, \
661 662
        and input ``y`` must be LodTensor.

663
    **Following examples will explain how sequence_expand works:**
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

    .. code-block:: text

        Case 1

        Consider 2 sequences [a][b] and [c][d], now we want to expand them to [a][b], [a][b], [c][d] and [c][d].
        Sequence [a][b] expand twice and [c][d] expands twice, so the lod which according to is [2, 2].

        Input x is a 1-level LoDTensor:
            x.lod  = [[2,        2]]    #lod based on length may be easier to understand
            x.data = [[a], [b], [c], [d]]
            x.dims = [4, 1]

        input y is a LoDTensor:
            y.lod = [[2,    2],    #the 0th level lod, according to this level
                     [3, 3, 1, 1]] #the 1st level lod, it has nothing to do with this level

        ref_level: 0

        then output is a 1-level LoDTensor out:
T
tianshuo78520a 已提交
684
            out.lod =  [[2,        2,        2,        2]]    #lod based on offset
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
            out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
            out.dims = [8, 1]


        Case 2

        Consider 3 sequences [a], [b], [c], now we want to expand them to [a][a], [c][c][c].
        It's obvious that the lod info of expanded sequences is [2, 0, 3].

        x is a Tensor:
            x.data = [[a], [b], [c]]
            x.dims = [3, 1]

        y is a LoDTensor:
            y.lod = [[2, 0, 3]]

        ref_level: -1

        then output is a 1-level LodTensor:
            out.data = [[a], [a], [c], [c], [c]]
            out.dims = [5, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor, with the \
            dims ``[M, K]``. The lod level is at most 1. The data type should be \
710
            float32, float64, int32 or int64.
711 712 713 714 715 716
        y (Variable): The input variable which is a LoDTensor, the lod level is \
            at least 1.
        ref_level (int): Lod level of ``y`` to be referred by ``x``. If set to -1, \
                         refer the last level of lod.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
717
            None by default.
718

719
    Returns:
720
            Tensor, The expanded variable which is a LoDTensor, with dims ``[N, K]``. \
721 722 723 724 725
            ``N`` depends on the lod info of ``x`` and ``y``. \
            The data type is same as input.

    Examples:
        .. code-block:: python
726

727 728 729
            import paddle
            from paddle import fluid
            paddle.enable_static()
730 731
            import numpy as np

732 733
            x = paddle.static.data(name='x', shape=[4, 1], dtype='float32')
            y = paddle.static.data(name='y', shape=[8, 1],
734
                        dtype='float32', lod_level=1)
735
            out = paddle.static.nn.sequence_expand(x=x, y=y, ref_level=0)
736

737 738
            exe = paddle.static.Executor(fluid.CPUPlace())
            place = paddle.CPUPlace()
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

            np_data = np.array([[1], [2], [3], [4]]).astype('float32')
            x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
            print(x_lod_tensor)
            #lod: [[0, 2, 4]]
            #    dim: 4, 1
            #    layout: NCHW
            #    dtype: float
            #    data: [1 2 3 4]

            np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
	    y_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2], [3,3,1,1]], place)
            print(y_lod_tensor)
            #lod: [[0, 2, 4][0, 3, 6, 7, 8]]
            #    dim: 8, 1
            #    layout: NCHW
            #    dtype: int64_t
            #    data: [0 0 1 1 1 1 1 0]

            out_main = exe.run(fluid.default_main_program(),
                            feed={'x': x_lod_tensor, 'y': y_lod_tensor},
                            fetch_list=[out], return_numpy=False)
            print(out_main[0])
            #lod: [[0, 2, 4, 6, 8]]
            #    dim: 8, 1
            #    layout: NCHW
            #    dtype: float
            #    data: [1 2 1 2 3 4 3 4]
    """
J
Jiabin Yang 已提交
768
    assert not _non_static_mode(), (
769
        "sequence layer is not supported in dygraph mode yet.")
770 771
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'sequence_expand')
772 773
    helper = LayerHelper('sequence_expand', **locals())
    dtype = helper.input_dtype(input_param_name='x')
774
    tmp = helper.create_variable_for_type_inference(dtype)
775 776 777 778 779 780 781
    helper.append_op(type='sequence_expand',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': tmp},
                     attrs={'ref_level': ref_level})
782 783 784 785
    return tmp


def sequence_expand_as(x, y, name=None):
786
    r"""
S
swtkiwi 已提交
787 788

        Sequence Expand As Layer. This OP will expand the input variable ``x`` \
789 790 791 792 793 794
        according to the zeroth level lod of ``y``. Current implementation requires \
        the level number of ``y``'s lod must be 1, and the first dimension of \
        ``x`` should be equal to the size of ``y``'s zeroth level lod, thus \
        the expanded LodTensor has the same lod info as ``y``. The expanded result \
        has nothing to do with ``x``'s lod, so the lod of Input(X) is not considered.

795 796
    Note:
        Please note that the input ``x`` should be LodTensor or Tensor, \
797 798 799 800 801 802 803 804 805 806
        and input ``y`` must be LodTensor.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        Case 1:

        Consider 4 sequences [a], [b], [c], [d], now we want to expand them to [a][a][a], [b][b][b], [c] and [d].
        It's obvious that the lod info of expanded sequences is [0, 3, 6, 7, 8].
807
        Given a 1-level LodTensor ``x``:
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
            x.data = [[a], [b], [c], [d]]
            x.dims = [4, 1]
        and input ``y``
            y.lod = [[3, 3, 1, 1]] #lod based on length may be easier to understand

        then we get 1-level LoDTensor out:
            Out.lod =  [[0,            3,              6,  7,  8]] #based on offset
            Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
            Out.dims = [8, 1]


        Case 2:

        Given a common Tensor ``x``:
            x.data = [[a, b], [c, d], [e, f]]
            x.dims = [3, 2]
        and input ``y``:
            y.lod = [[0, 2, 3, 6]]

        then we get a 1-level LoDTensor:
            out.lod =  [[0,             2,     3,                    6]]
            out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
            out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor, with the \
834
            dims ``[M, K]``. The data type should be float32, float64, int32 \
835 836 837 838 839 840
            or int64.
        y (Variable): The input variable which is a LoDTensor with 1-level lod.
        name (str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

841
    Returns:
842
            Tensor, The expanded variable which is a LoDTensor with the dims ``[N, K]``. \
843 844 845 846 847 848
            ``N`` depends on the lod of ``y``, and the lod level must be 1. \
            The data type is same as input.

    Examples:
        .. code-block:: python

849
            import paddle
850
            import paddle.fluid as fluid
851
            paddle.enable_static()
852 853
            import numpy as np

854 855 856
            x = paddle.static.data(name='x', shape=[4, 1], dtype='float32')
            y = paddle.static.data(name='y', shape=[8, 1], dtype='float32', lod_level=1)
            out = paddle.static.nn.sequence_expand_as(x=x, y=y)
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

            exe = fluid.Executor(fluid.CPUPlace())
            place = fluid.CPUPlace()

            np_data = np.array([[1], [2], [3], [4]]).astype('float32')
            x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
            print(x_lod_tensor)
            #lod: [[0, 2, 4]]
            #    dim: 4, 1
            #    layout: NCHW
            #    dtype: float
            #    data: [1 2 3 4]

            np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
	    y_lod_tensor = fluid.create_lod_tensor(np_data, [[3,3,1,1]], place)
            print(y_lod_tensor)
            #lod: [[0, 3, 6, 7, 8]]
            #    dim: 8, 1
            #    layout: NCHW
            #    dtype: int64_t
            #    data: [0 0 1 0 1 1 1 0]

            out_main = exe.run(fluid.default_main_program(),
                            feed={'x': x_lod_tensor, 'y': y_lod_tensor},
                            fetch_list=[out], return_numpy=False)
            print(out_main[0])
            #lod: [[0, 3, 6, 7, 8]]
            #    dim: 8, 1
            #    layout: NCHW
            #    dtype: float
            #    data: [1 1 1 2 2 2 3 4]
    """
J
Jiabin Yang 已提交
889
    assert not _non_static_mode(), (
890
        "sequence layer is not supported in dygraph mode yet.")
891 892 893
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'sequence_expand_as')
    check_type(y, 'y', Variable, 'sequence_expand_as')
894 895
    helper = LayerHelper('sequence_expand_as', **locals())
    dtype = helper.input_dtype(input_param_name='x')
896
    tmp = helper.create_variable_for_type_inference(dtype)
897 898 899 900 901 902
    helper.append_op(type='sequence_expand_as',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': tmp})
903 904 905 906
    return tmp


def sequence_pad(x, pad_value, maxlen=None, name=None):
907
    r"""
S
swtkiwi 已提交
908

909 910 911 912
        This layer padding the sequences in a same batch to a common length (according
        to ``maxlen``). The padding value is defined by ``pad_value``, and will be
        appended to the tail of sequences. The result is a Python tuple ``(Out, Length)``:
        the LodTensor ``Out`` is the padded sequences, and LodTensor ``Length`` is
S
sunzhongkai588 已提交
913 914
        the length information of input sequences. For removing padding data (unpadding operation), See :ref:`api_fluid_layers_sequence_unpad`.

915
    Note:
S
sunzhongkai588 已提交
916
        Please note that the input ``x`` should be LodTensor.
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

    .. code-block:: text

        Case 1:
        Given input 1-level LoDTensor x:
            x.lod = [[0,  2,   5]]
            x.data = [[a],[b],[c],[d],[e]]
        pad_value:
            pad_value.data = [0]
        maxlen = 4

        the output tuple (Out, Length):
            Out.data = [[[a],[b],[0],[0]],[[c],[d],[e],[0]]]
            Length.data = [2, 3]      #Original sequences length

        Case 2:
        Given input 1-level LoDTensor x:
            x.lod =  [[0,             2,                     5]]
            x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
        pad_value:
            pad_value.data = [0]
T
tianshuo78520a 已提交
938
        default maxlen = None, (the virtual value is 3, according to the shape of x)
939 940 941 942 943 944 945 946 947 948 949

        the output tuple (Out, Length):
            Out.data = [[[a1,a2],[b1,b2],[0,0]],[[c1,c2],[d1,d2],[e1,e2]]]
            Length.data = [2, 3]

        Case 3:
        Given input 1-level LoDTensor x:
            x.lod =  [[0,             2,                     5]]
            x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
        pad_value:
            pad_value.data = [p1,p2]
T
tianshuo78520a 已提交
950
        default maxlen = None, (the virtual value is 3)
951 952 953 954 955 956 957 958 959

        get tuple (Out, Length):
            Out.data = [[[a1,a2],[b1,b2],[p1,p2]],[[c1,c2],[d1,d2],[e1,e2]]]
            Length.data = [2, 3]



    Args:
        x (Variable): Input 1-level LodTensor with dims ``[M, K]``. The batch \
T
tianshuo78520a 已提交
960
            size is described by lod infor (the number of sequences ). \
961 962 963 964 965 966 967 968 969 970 971 972
            The data type should be float32, float64, int8, int32 or int64.
        pad_value (Variable): Padding value. It can be a scalar or a 1D tensor \
            with length ``K``. If it's a scalar, it will be automatically broadcasted \
            to a Tensor. The data type should be as same as ``x``.
        maxlen (int, optional): The length of padded sequences, None by default. \
            When it is None, all sequences will be padded up to the length of the \
            longest one among them; when it a certain positive value, it must be \
            greater than the length of the longest original sequence.
        name (str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

973
    Returns:
974
            tuple, A Python tuple (Out, Length): the 1st is a 0 level LodTensor \
975 976 977 978 979 980 981
            ``Out``, with the shape ``[batch_size, maxlen, K]``; the second is the original \
            sequences length infor ``Length``, which should be a 0-level 1D LodTensor. \
            The size of ``Length`` is equal to batch size, and the data type is int64.

    Examples:
        .. code-block:: python

982 983
            import paddle
            paddle.enable_static()
984 985 986
            import paddle.fluid as fluid
            import numpy

987 988 989 990
            x = paddle.static.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
            pad_value = paddle.assign(
                numpy.array([0.0], dtype=numpy.float32))
            out = paddle.static.nn.sequence_pad(x=x, pad_value=pad_value)
991 992
    """

J
Jiabin Yang 已提交
993
    assert not _non_static_mode(), (
994
        "sequence layer is not supported in dygraph mode yet.")
995
    helper = LayerHelper('sequence_pad', **locals())
996 997 998 999 1000
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'fluid.layers.sequence_pad')
    check_variable_and_dtype(pad_value, 'pad_value',
                             ['float32', 'float64', 'int32', 'int64'],
                             'fluid.layers.sequence_pad')
1001
    dtype = helper.input_dtype(input_param_name='x')
1002
    out = helper.create_variable_for_type_inference(dtype)
1003
    length = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1004 1005 1006 1007 1008 1009

    pad_value.stop_gradient = True
    length.stop_gradient = True

    if maxlen is None:
        maxlen = -1
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    helper.append_op(type='sequence_pad',
                     inputs={
                         'X': x,
                         'PadValue': pad_value
                     },
                     outputs={
                         'Out': out,
                         'Length': length
                     },
                     attrs={'padded_length': maxlen})
1020 1021 1022 1023 1024
    return out, length


def sequence_unpad(x, length, name=None):
    """
S
swtkiwi 已提交
1025

1026
    Note:
1027 1028
        The input of the OP is Tensor and the output is LoDTensor.  For padding operation, See:**  :ref:`api_fluid_layers_sequence_pad`

1029
    Remove the padding data from the input based on the length information and returns a LoDTensor.
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

    .. code-block:: text

	Case 1:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

T
tianshuo78520a 已提交
1040
	in which there are 3 sequences padded to length 5, and the actual length
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	specified by input Variable **length**:

	    length.data = [2, 3, 4],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
	    out.lod = [[0, 2, 5, 9]]

    Args:
        x(Variable): A Tensor which contains padding data, and its shape size can not be less than 2.
                     Supported data types: float32, float64, int32, int64.
1053
        length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor
1054
                          has the same shape with the 0th dimension of the X . Supported data types: int64.
1055
        name(str|None):  The default value is None.  Normally there is no need for user to set this property.
1056 1057 1058 1059 1060 1061 1062 1063
                         For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: A LoDTensor whose recursive sequence length is consistent with the information of the length parameter and it has the same data type with input.

    Examples:
        .. code-block:: python

1064 1065
            import paddle
            paddle.enable_static()
1066 1067 1068 1069
            import paddle.fluid as fluid
            import numpy

            # pad data
1070 1071 1072
            x = paddle.static.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
            pad_value = paddle.assign(numpy.array([0.0], dtype=numpy.float32))
            pad_data, len = paddle.static.nn.sequence_pad(x=x, pad_value=pad_value)
1073

1074
            # unpad data
1075
            unpad_data = paddle.static.nn.sequence_unpad(x=pad_data, length=len)
1076 1077
    """

J
Jiabin Yang 已提交
1078
    assert not _non_static_mode(), (
1079
        "sequence layer is not supported in dygraph mode yet.")
1080
    helper = LayerHelper('sequence_unpad', **locals())
1081 1082 1083 1084
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'fluid.layers.sequence_unpad')
    check_variable_and_dtype(length, 'length', ['int64'],
                             'fluid.layers.sequence_unpad')
1085
    dtype = helper.input_dtype(input_param_name='x')
1086 1087 1088 1089
    out = helper.create_variable_for_type_inference(dtype)

    length.stop_gradient = True

1090 1091 1092 1093 1094 1095
    helper.append_op(type='sequence_unpad',
                     inputs={
                         'X': x,
                         'Length': length
                     },
                     outputs={'Out': out})
1096 1097 1098 1099 1100
    return out


def sequence_reshape(input, new_dim):
    """
S
swtkiwi 已提交
1101

1102
    Note:
1103
        Only receives LoDTensor as input. If your input is Tensor, please use reshape Op.(fluid.layers.** :ref:`api_fluid_layers_reshape` ).
1104

1105
    Only supports LoDTensor as input. Given :attr:`new_dim` ,
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    it will compute new shape according to original length of each sequence,
    original dimensions and :attr:`new_dim` . Then it will output a new LoDTensor
    containing :attr:`new_dim` . Currently it only supports 1-level LoDTensor.
    Please make sure that (original length * original dimensions) can be divided
    by the :attr:`new_dim` with no remainder for each sequence.

    .. code-block:: text

        input is a LoDTensor:
            input.lod  = [[0, 2, 6]]
            input.data = [[1,  2], [3,  4],
                          [5,  6], [7,  8],
                          [9, 10], [11, 12]]
            input.shape = [6, 2]

        set new_dim = 4
        out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
            out.shape = [3, 4]


    Args:

       input (Variable): 1-level LoDTensor with shape :math:`[M, K]` . The data type should
            be int32, int64, float32 or float64.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension. The data type is same as input.

    Examples:
        .. code-block:: python

1142 1143 1144 1145 1146
            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 16], dtype='float32', lod_level=1)
            x_reshaped = paddle.static.nn.sequence_reshape(input=x, new_dim=4)
1147
    """
J
Jiabin Yang 已提交
1148
    assert not _non_static_mode(), (
1149 1150
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_reshape', **locals())
1151 1152 1153
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'fluid.layers.sequence_reshape')
1154
    out = helper.create_variable_for_type_inference(helper.input_dtype())
1155 1156 1157 1158
    helper.append_op(type='sequence_reshape',
                     inputs={'X': [input]},
                     outputs={'Out': [out]},
                     attrs={'new_dim': new_dim})
1159 1160 1161 1162 1163
    return out


def sequence_scatter(input, index, updates, name=None):
    """
S
swtkiwi 已提交
1164

1165 1166
    Note:
        The index and updates parameters of the OP must be LoDTensor.
1167

T
tianshuo78520a 已提交
1168
    Plus the updates data to the corresponding input according to the index.
1169 1170

    The updated algorithm is as follows: output[instance_index][index [pos]] = input[instance_index][index [pos]] +  updates[pos],
1171 1172
    where instance_idx is the K sample corresponding to pos in batch.

1173
    The value of output[i][j] depends on whether j can be found in the i+1th interval of the index. If found,
1174 1175
    out[i][j] = input[i][j] + update[m] [n], otherwise, out[i][j] = input[i][j].

1176 1177 1178
    For example, in the following example, the lod information for index is divided into three sequences. Among
    them, because the element 0 can be found in the first interval of the index, it is updated with the value of
    the corresponding position of the updates, out[0][0] = input[0][0]+updates[0][0] . Because element 1 cannot
1179 1180 1181
    be found in the third interval of index, out[2][1] = input[2][1].

    .. code-block:: text
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        *Case 1:

            Given:
                input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                              [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                              [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
                              input.dims = [3, 6]

                index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
                index.lod =  [[0,        3,                       8,                 12]]

                updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
                updates.lod =  [[  0,            3,                                 8,                         12]]

            Then:
                out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                            [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                            [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
                out.dims = X.dims = [3, 6]

    Args:
        input (Variable): A Tensor with shape of  :math:`[N, k_1... k_n]`. Supported data types: float32, float64, int32, int64.
1205
        index (Variable):  A LoDTensor contains index information. Its LoD level must be 1 and its data type can be int32 or int64.
1206
        updates (Variable): A LodTensor contains updates information. It has the same  LoD level with the index and has the
1207
                            same data type  with the input. Supported data types: float32, float64, int32, int64.
1208
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information,
1209 1210 1211 1212 1213 1214 1215 1216
                              please refer to :ref:`api_guide_Name`

    Returns:
        Variable: A Tensor which has been updated. It has the same shape and data type with input.

    Examples:

        .. code-block:: python
1217

1218 1219
            import paddle
            paddle.enable_static()
1220

1221 1222 1223 1224
            input = paddle.static.data(name="x", shape=[None, 3, 6], dtype='float32' )
            index = paddle.static.data(name='index', shape=[12, 1],  dtype='int64', lod_level=1)
            updates = paddle.static.data(name='updates', shape=[12, 1], dtype='float32', lod_level=1)
            output = paddle.static.nn.sequence_scatter(input, index, updates)
1225 1226

    """
J
Jiabin Yang 已提交
1227
    assert not _non_static_mode(), (
1228 1229
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_scatter', **locals())
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'sequence_scatter')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'sequence_scatter')
    check_variable_and_dtype(updates, 'updates',
                             ['float32', 'float64', 'int32', 'int64'],
                             'sequence_scatter')

1240 1241
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
1242 1243 1244 1245 1246 1247 1248
    helper.append_op(type="sequence_scatter",
                     inputs={
                         "X": input,
                         "Ids": index,
                         "Updates": updates
                     },
                     outputs={"Out": out})
1249 1250 1251 1252
    return out


def sequence_enumerate(input, win_size, pad_value=0, name=None):
1253
    r"""
S
swtkiwi 已提交
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    Generate a new sequence for the input index sequence with \
        shape ``[d_1, win_size]``, which enumerates all the \
        sub-sequences with length ``win_size`` of the input with \
        shape ``[d_1, 1]``, and padded by ``pad_value`` if necessary in generation.

    Please note that the `input` must be LodTensor.

    .. code-block:: text

        Input x:
            x.lod = [[0, 3, 5]]
            x.data = [[1], [2], [3], [4], [5]]
            x.dims = [5, 1]

        Attrs:
            win_size = 2
            pad_value = 0

        Output:
            out.lod = [[0, 3, 5]]
            out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            out.dims = [5, 2]


    Args:
        input (Variable): The input variable which is a index sequence, \
            which should be a LodTensor with shape ``[d_1, 1]`` and 1-level lod info. \
1282
            The data type should be int32 or int64.
1283 1284 1285 1286 1287 1288
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int, optional): The padding value, default 0.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

1289
    Returns:
1290
            Tensor, The enumerate sequence variable which is a LoDTensor with \
1291 1292 1293 1294 1295 1296
            shape ``[d_1, win_size]`` and 1-level lod info. \
            The data type is same as ``input``.

    Examples:
        .. code-block:: python

1297 1298
            import paddle
            paddle.enable_static()
1299

1300 1301
            x = paddle.static.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
            out = paddle.static.nn.sequence_enumerate(input=x, win_size=3, pad_value=0)
1302
    """
J
Jiabin Yang 已提交
1303
    assert not _non_static_mode(), (
1304
        "sequence layer is not supported in dygraph mode yet.")
1305 1306
    check_variable_and_dtype(input, 'input', ['int32', 'int64'],
                             'sequence_enumerate')
1307
    helper = LayerHelper('sequence_enumerate', **locals())
1308 1309 1310 1311 1312 1313 1314 1315 1316
    out = helper.create_variable_for_type_inference(helper.input_dtype(),
                                                    stop_gradient=True)
    helper.append_op(type='sequence_enumerate',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={
                         'win_size': win_size,
                         'pad_value': pad_value
                     })
1317 1318 1319 1320
    return out


def sequence_mask(x, maxlen=None, dtype='int64', name=None):
1321
    r"""
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:

    .. math::

        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    .. code-block:: text

        Case:

        Consider input:
            x = [3, 1, 1, 0]    max_len = 4

        then we get out:
            mask = [[1, 1, 1, 0],
                    [1, 0, 0, 0],
                    [1, 0, 0, 0],
                    [0, 0, 0, 0]]

    Args:
        x (Variable): Input tensor of sequence_mask layer, \
            whose elements are integers less than :code:`maxlen`. \
            Tensor or LodTensor with shape [d_1, d_2, ..., d_n].
        maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \
                           is None, it would be replace with :math:`max(x)`.
1353
        dtype (np.dtype|paddle.dtype|str, optional): Data type of the output, \
1354 1355 1356 1357 1358
             ``int64`` by default.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

1359
    Returns:
1360 1361
            Tensor, The output sequence mask. Tensor with shape [d_1, d_2, ..., d_n, maxlen]
            and data type of :code:`dtype`. The data type should be bool, float32, float64, int8,
1362 1363 1364 1365 1366
            int32 or int64.

    Examples:
        .. code-block:: python

1367 1368 1369 1370
            import paddle

            lengths = paddle.to_tensor([10, 9, 8])
            mask = paddle.nn.functional.sequence_mask(lengths)
1371

1372 1373 1374 1375
            print(mask.numpy())
            # [[1 1 1 1 1 1 1 1 1 1]
            #  [1 1 1 1 1 1 1 1 1 0]
            #  [1 1 1 1 1 1 1 1 0 0]]
1376 1377

    """
1378

1379
    return paddle.nn.functional.sequence_mask(x, maxlen, dtype, name)
1380 1381 1382 1383 1384


@templatedoc()
def sequence_reverse(x, name=None):
    """
1385
    Note:
1386
        Only receives LoDTensor as input. If your input is Tensor, please use reverse Op.(fluid.layers.** :ref:`api_fluid_layers_reverse` ).
1387

1388
    Only supports LoDTensor as input. It will reverse each sequence for input LoDTensor.
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
    Currently it only supports 1-level LoDTensor. This operator is very useful when building a
    reverse :ref:`api_fluid_layers_DynamicRNN` network.

    .. code-block:: text

        input(x) is a LoDTensor:
            x.lod  = [[0, 2, 5]]
            x.data = [[1,  2,  3,  4],
                      [5,  6,  7,  8],
                      [9, 10, 11, 12],
                      [13,14, 15, 16],
                      [17,18, 19, 20]]
            x.shape = [5, 4]

        output LoDTensor with same shape and LoD info:
            out.lod  = [[0, 2, 5]]
            out.data = [[5,  6,  7,  8],
                        [1,  2,  3,  4],
                        [17,18, 19, 20],
                        [13,14, 15, 16],
                        [9, 10, 11, 12]]
            out.shape = [5, 4]

    Args:
        x(Variable): LoDTensor with 1-level LoD info. Currently it only supports 1-level LoDTensor.
            The data type should be float32, float64, int8, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: LoDTensor reversed from input. The data type is same with input.

    Examples:
        .. code-block:: python

1424 1425 1426 1427 1428
            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
            x_reversed = paddle.static.nn.sequence_reverse(x)
1429
    """
J
Jiabin Yang 已提交
1430
    assert not _non_static_mode(), (
1431 1432
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper("sequence_reverse", **locals())
1433 1434 1435
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'fluid.layers.sequence_reverse')
1436
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1437

1438 1439 1440 1441
    helper.append_op(type="sequence_reverse",
                     inputs={"X": x},
                     outputs={"Y": out},
                     attrs=dict())
1442
    return out