communicator.py 8.4 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright(c) 2019 PaddlePaddle Authors.All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0(the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http:  // www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

29
from .executor import global_scope
30 31 32 33
"""
Communicator is used for async distribute training in distribute_transpiler mode.
It's a wrapper of a cpp class Communicator and should be used inside fleet API.
"""
34
from . import core
35
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
36

37
__all__ = ['Communicator', 'FLCommunicator', 'LargeScaleKV']
38 39 40


class Communicator(object):
41

42
    def __init__(self, mode, kwargs=None, envs=None):
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        """
        Communicator is used for async distribute training in distribute_transpiler mode.
        It's a wrapper of a cpp class Communicator and should be used inside fleet API.

        Args:
            program(Program): the trainers program after transpile of distribute_transpiler.
            It's used by communicator to extract the information to do communication.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
        # set all recv op to not_run mode
65

66 67 68 69 70
        if kwargs == None:
            if envs == None:
                envs = {}
        else:
            if mode == DistributedMode.SYNC:
71 72
                envs["pserver_endpoints"] = ','.join(
                    kwargs["pserver_endpoints"])
73 74 75 76 77

            envs["trainers"] = str(kwargs["trainers"])
            envs["trainer_id"] = str(kwargs["trainer_id"])
            envs["need_global_step"] = str(kwargs["need_global_step"])
            envs["barrier_table_id"] = str(kwargs["barrier_table_id"])
78

79 80 81 82 83 84 85 86 87 88 89
        mode_str = None

        if mode == DistributedMode.SYNC:
            mode_str = "SYNC"
        elif mode == DistributedMode.ASYNC:
            mode_str = "ASYNC"
        elif mode == DistributedMode.HALF_ASYNC:
            mode_str = "HALF_ASYNC"
        elif mode == DistributedMode.GEO:
            mode_str = "GEO"

90 91 92
        self.mode = mode_str
        self.envs = envs
        self.communicator_ = None
T
tangwei12 已提交
93 94 95 96 97 98 99 100
        self.send_ctx_ = None
        self.recv_ctx_ = None

    def init_with_ctx(self,
                      send_ctx,
                      recv_ctx,
                      proto_txt,
                      unit64_hosts,
Z
zhaocaibei123 已提交
101 102 103
                      scope=None):
        if scope == None:
            scope = global_scope()
T
tangwei12 已提交
104 105 106 107 108
        self.communicator_ = core.DistCommunicator(self.mode, proto_txt,
                                                   unit64_hosts, send_ctx,
                                                   recv_ctx, scope, self.envs)
        self.send_ctx_ = send_ctx
        self.recv_ctx_ = recv_ctx
109

110 111 112 113 114 115 116 117 118 119 120 121 122
    def create_client_to_client_connection(self,
                                           pserver_timeout_ms=500000,
                                           pserver_connect_timeout_ms=10000,
                                           max_retry=3):
        self.communicator_.create_client_to_client_connection(
            pserver_timeout_ms, pserver_connect_timeout_ms, max_retry)

    def get_client_info(self):
        return self.communicator_.get_client_info()

    def set_clients(self, host_list):
        self.communicator_.set_clients(host_list)

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    def start(self):
        """
        Start communicator. Should call before training process.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
140 141 142
        if self.communicator_ == None:
            print('you must call init_with_ctx first to init comm before start')
            return
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        self.communicator_.start()

    def stop(self):
        """
        Stop communicator. Should call after training process.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
162 163 164
        if self.communicator_ == None:
            print('you must call init_with_ctx first to init comm before stop')
            return
165
        self.communicator_.stop()
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    def is_running(self):
        """
        Get communicator is running or stop.

        Returns:
            bool

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.is_running()
        """
183 184 185
        if self.communicator_ == None:
            print('you must call init_with_ctx first to init comm before stop')
            return
186
        self.communicator_.is_running()
187 188 189 190

    def recv(self):
        self.communicator_.recv()

T
tangwei12 已提交
191 192 193
    def init_params(self, context):
        self.communicator_.init_params(context)

194 195 196
    def pull_dense(self, context):
        self.communicator_.pull_dense(context)

Z
zhaocaibei123 已提交
197 198 199
    def push_sparse_param(self, var_name, table_id=-1, scope=None):
        if scope == None:
            scope = global_scope()
T
tangwei12 已提交
200 201 202 203 204 205 206 207 208 209
        if not self.is_running():
            raise ValueError(
                "Communicator should init first. Using fleet.init_worker() before push_sparse_param()"
            )
        assert isinstance(var_name, str)
        assert isinstance(table_id, int)
        if table_id == -1:
            table_id = self.send_ctx_[var_name].table_id()
        self.communicator_.push_sparse_param(var_name, table_id, scope)

210

211
class FLCommunicator(Communicator):  ## only for coordinator
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

    def __init__(self, ps_hosts, kwargs=None):
        mode = None
        super(FLCommunicator, self).__init__(mode, kwargs)
        send_ctx = {}
        dense_map = {}
        prototxt = ""
        self.mode = "WITH_COORDINATOR"
        self.init_with_ctx(send_ctx, dense_map, prototxt, ps_hosts)

    def start_coordinator(self, self_endpoint, trainer_endpoints):
        if self.communicator_ != None:
            self.communicator_.start_coordinator(self_endpoint,
                                                 trainer_endpoints)
        return

    def save_fl_strategy(self, mp):
        if self.communicator_ != None:
            self.communicator_.save_fl_strategy(mp)
        else:
            raise ValueError("self.communicator_ is null")
        return

    def query_fl_clients_info(self):
        info_mp = {}
        if self.communicator_ != None:
            info_mp = self.communicator_.query_fl_clients_info()
        return info_mp


242
class LargeScaleKV(object):
243

244 245 246 247 248 249 250 251
    def __init__(self):
        self.scale_kv = core.LargeScaleKV()

    def save(self, varname, dirname):
        self.scale_kv.save(varname, dirname)

    def load(self, varname, dirname):
        self.scale_kv.load(varname, dirname)
252 253 254

    def size(self, varname):
        return self.scale_kv.size(varname)
T
tangwei12 已提交
255 256 257


class HeterClient(object):
258

259 260 261
    def __init__(self, endpoint, previous_endpoint, trainer_id):
        self.heter_client_ = core.HeterClient(endpoint, previous_endpoint,
                                              trainer_id)
T
tangwei12 已提交
262 263 264

    def stop(self):
        self.heter_client_.stop()