test_hsigmoid_op.py 10.4 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yancey1989 已提交
17 18
import unittest
import numpy as np
J
JiabinYang 已提交
19 20
import paddle.fluid.core as core
import paddle.fluid as fluid
Y
Yancey1989 已提交
21
import math
W
weixing02 已提交
22
from op_test import OpTest
Y
Yancey1989 已提交
23

D
dzhwinter 已提交
24 25
np.random.seed(100)

Y
Yancey1989 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


45 46 47 48 49 50 51 52 53 54 55
class CodeTableWithCustomTree(object):
    def __init__(self, ptable, pcode, index):
        self.ptable_ = ptable
        self.pcode_ = pcode
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
56
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
57 58 59 60 61 62 63 64 65 66 67

            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
68
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
69 70 71 72 73 74
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
    pre_output = np.zeros((batch_size, code_length))
    pre_sum = np.zeros((batch_size, 1))
    out = np.zeros((batch_size, 1)).astype("float32")
W
weixing02 已提交
75
    for i in range(batch_size):
W
weixing02 已提交
76
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
77
        length = code_table.get_length()
W
weixing02 已提交
78
        for j in range(length):
Y
Yancey1989 已提交
79 80
            idx = code_table.cal_index(j)
            pre_output[i][j] += bias[0][idx]
81 82
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
83
        length = code_table.get_length()
84 85 86
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
87
    # clip[-40.0, 40.0]
W
weixing02 已提交
88
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
89
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
90
    for i in range(batch_size):
W
weixing02 已提交
91
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
92 93
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
94
        for j in range(length):
Y
Yancey1989 已提交
95 96 97 98 99 100 101
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
102
    return pre_output, out
Y
Yancey1989 已提交
103 104


105 106 107 108
def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
    batch_size = x.shape[0]
    code_length = len(ptable[0])
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
109
    # init pre_out with shape [N, code_length]
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    pre_output = np.zeros((batch_size, code_length))
    pre_sum = np.zeros((batch_size, 1))
    out = np.zeros((batch_size, 1)).astype("float32")
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += bias[0][idx]
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


J
JiabinYang 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
# class TestHSigmoidOp(OpTest):
#     def setUp(self):
#         self.op_type = "hierarchical_sigmoid"
#         num_classes = 6
#         feature_size = 8
#         batch_size = 4
#         x = np.random.random((batch_size, feature_size)).astype("float32") * 2
#         w = np.random.random(
#             (num_classes - 1, feature_size)).astype("float32") * 2
#         label = np.random.randint(0, num_classes, (batch_size, 1))
#         bias = np.random.random((1, num_classes - 1)).astype("float32")
#         self.attrs = {'num_classes': num_classes, 'is_sparse': False}
#         self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
#         pre_output, out = hsigmoid(x, w, label, bias, num_classes)
#         self.outputs = {'PreOut': pre_output, 'Out': out}
Y
Yancey1989 已提交
158

J
JiabinYang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
#     def test_check_output(self):
#         self.check_output()

#     def test_check_grad(self):
#         self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))

# class TestHSigmoidOpSparse(OpTest):
#     def setUp(self):
#         self.op_type = "hierarchical_sigmoid"
#         num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
#         feature_size = 8
#         batch_size = 4
#         x = np.random.random((batch_size, feature_size)).astype("float32") * 2
#         w = np.random.random(
#             (num_classes - 1, feature_size)).astype("float32") * 2
#         label = np.array([0, 1, 4, 5])
#         ptable = np.array(
#             [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
#              (0, 2, -1, -1,
#               -1)])  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
#         pcode = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
#             1, 0, 0, -1, -1), (0, 1, -1, -1, -1)])  #np.array to store 
#         bias = np.random.random((1, num_classes - 1)).astype("float32")
#         self.attrs = {'num_classes': num_classes, 'is_sparse': True}
#         self.inputs = {
#             'X': x,
#             'W': w,
#             'PTable': ptable,
#             'PCode': pcode,
#             'Label': label,
#             'Bias': bias
#         }
#         pre_output, out = hsigmoidWithCustomTree(x, w, ptable, pcode, label,
#                                                  bias, num_classes)
#         self.outputs = {'PreOut': pre_output, 'Out': out}

#     def test_check_output(self):
#         print("checking output in CostumTree")
#         self.check_output()


class TestHSigmoidOpWithSparseGrad():
    def hs_net_conf(self):
        emb = fluid.layers.data(name="x", shape=[3], dtype='int64')
        ptable = fluid.layers.data(name='ptable', shape=[3], dtype='int64')
        pcode = fluid.layers.data(name='pcode', shape=[3], dtype='int64')
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        data_list = [emb, ptable, pcode, label]
        cost = fluid.layers.hsigmoid(
            input=emb,
            label=predict_word,
            non_leaf_num=4,
            ptable=ptable,
            pcode=pcode,
            is_costum=True,
            is_sparse=True)

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

    def test_training_test(self):
        print("im here")
        w = np.arange(12).reshape(4, 3)
        x = np.ones((2, 3))
        ptable = np.array([(1, 2, -1), (1, 2, -1)])
        pcode = np.array([(1, 0, -1), (0, 0, -1)])
        label = np.array([(1, 4)])

        loss, data_list = hs_net_conf()
        optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
        optimizer.minimize(loss)

        main_program = fluid.default_main_program()

        place = fluid.CPUPlace()
        feeder = fluid.DataFeeder(feed_list=data_list, place=place)
        data_name_list = [var.name for var in data_list]
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        for pass_id in range(args.num_passes):
            for i in range(10):
                data = [w, x[i % 2], ptable[i % 2], pcode[i % 2], label[i % 2]]
                loss_val = exe.run(main_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[loss])
                print("loss is: {loss}".format(loss=loss))


# class TestHSigmoidOpWithCostumTree(OpTest):
#     def setUp(self):
#         self.op_type = "hierarchical_sigmoid"
#         num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
#         feature_size = 8
#         batch_size = 4
#         x = np.random.random((batch_size, feature_size)).astype("float32") * 2
#         w = np.random.random(
#             (num_classes - 1, feature_size)).astype("float32") * 2
#         label = np.array([0, 1, 4, 5])
#         ptable = np.array(
#             [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
#              (0, 2, -1, -1,
#               -1)])  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
#         pcode = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
#             1, 0, 0, -1, -1), (0, 1, -1, -1, -1)])  #np.array to store 
#         bias = np.random.random((1, num_classes - 1)).astype("float32")
#         self.attrs = {'num_classes': num_classes, 'is_sparse': False}
#         self.inputs = {
#             'X': x,
#             'W': w,
#             'PTable': ptable,
#             'PCode': pcode,
#             'Label': label,
#             'Bias': bias
#         }
#         pre_output, out = hsigmoidWithCustomTree(x, w, ptable, pcode, label,
#                                                  bias, num_classes)
#         self.outputs = {'PreOut': pre_output, 'Out': out}

#     def test_check_output(self):
#         print("checking output in CostumTree")
#         self.check_output()

#     def test_check_grad(self):
#         print("checking outputGrad in CostumTree")
#         self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
Y
Yancey1989 已提交
285 286 287

if __name__ == '__main__':
    unittest.main()