math_function_test.cc 7.5 KB
Newer Older
1
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/math/math_function.h"
Q
qijun 已提交
15
#include "gtest/gtest.h"
Y
Yu Yang 已提交
16
#include "paddle/fluid/operators/math/blas.h"
Q
qijun 已提交
17

Y
Yu Yang 已提交
18 19 20 21 22 23 24
template <typename T>
inline paddle::operators::math::BlasT<paddle::platform::CPUDeviceContext, T>
GetBlas(const paddle::platform::CPUDeviceContext& context) {
  return paddle::operators::math::GetBlas<paddle::platform::CPUDeviceContext,
                                          T>(context);
}

G
guosheng 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
TEST(math_function, gemm_notrans_cblas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  paddle::platform::CPUDeviceContext context(*cpu_place);
Y
Yu Yang 已提交
45 46
  GetBlas<float>(context).GEMM(false, false, m, n, k, 1, input1_ptr, 3,
                               input2_ptr + 1, 4, 1, input3_ptr + 1, 4);
G
guosheng 已提交
47 48 49 50 51 52 53 54 55 56

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}
T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#ifdef PADDLE_WITH_LIBXSMM
template <typename T>
void MklSmmCompare(int m, int n, int k) {
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor mat_b;
  paddle::framework::Tensor mat_c_smm;
  paddle::framework::Tensor mat_c_mkl;
  auto* cpu_place = new paddle::platform::CPUPlace();

  T* A = mat_a.mutable_data<T>({m, k}, *cpu_place);
  T* B = mat_b.mutable_data<T>({k, n}, *cpu_place);
  T* CSMM = mat_c_smm.mutable_data<T>({m, n}, *cpu_place);
  T* CMKL = mat_c_mkl.mutable_data<T>({m, n}, *cpu_place);
  T alpha = static_cast<T>(1);
  T beta = static_cast<T>(0);
  for (int i = 0; i < mat_a.numel(); ++i) {
    A[i] = static_cast<T>(i);
  }
  for (int i = 0; i < mat_b.numel(); ++i) {
    B[i] = static_cast<T>(i);
  }

  auto smm = [&, m, n, k, alpha, beta]() {
    const char transa = 'N';
    const char transb = 'N';
    const int lda = m;
    const int ldb = k;
    const int ldc = m;
    paddle::operators::math::CBlas<T>::SMM_GEMM(&transa, &transb, &m, &n, &k,
                                                &alpha, A, &lda, B, &ldb, &beta,
                                                CSMM, &ldc);
  };

  auto mkl = [&, m, n, k, alpha, beta]() {
    int lda = k;
    int ldb = n;
    int ldc = n;
    paddle::operators::math::CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans,
                                            CblasNoTrans, m, n, k, alpha, A,
                                            lda, B, ldb, beta, CMKL, ldc);
  };
  smm();
  mkl();
  ASSERT_EQ(mat_c_mkl.numel(), mat_c_smm.numel());
  for (int i = 0; i < mat_c_mkl.numel(); ++i) {
    EXPECT_FLOAT_EQ(CSMM[i], CMKL[i]);
  }
}
TEST(math_function, gemm_mkl_vs_smm) {
  MklSmmCompare<float>(1, 2, 3);
  MklSmmCompare<double>(1, 2, 3);
  MklSmmCompare<float>(3, 8, 5);
  MklSmmCompare<double>(3, 8, 5);
}
#endif
G
guosheng 已提交
112

T
tensor-tang 已提交
113
TEST(math_function, gemm_trans_cblas) {
G
guosheng 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  paddle::platform::CPUDeviceContext context(*cpu_place);
Y
Yu Yang 已提交
133 134
  GetBlas<float>(context).GEMM(false, true, m, n, k, 1, input1_ptr, 3,
                               input2_ptr + 3, 3, 1, input3_ptr + 1, 4);
135 136
  delete cpu_place;
  cpu_place = NULL;
G
guosheng 已提交
137 138 139 140 141 142 143 144 145 146

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}
147 148 149 150 151 152

TEST(math_function, zero) {
  paddle::framework::Tensor tensor;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* t = tensor.mutable_data<float>({2, 2}, *cpu_place);
  paddle::platform::CPUDeviceContext context(*cpu_place);
Q
QI JUN 已提交
153 154
  paddle::operators::math::SetConstant<paddle::platform::CPUDeviceContext,
                                       float>
Q
qijun 已提交
155 156
      functor;
  functor(context, &tensor, 0);
157 158 159 160 161
  EXPECT_EQ(t[0], 0);
  EXPECT_EQ(t[1], 0);
  EXPECT_EQ(t[2], 0);
  EXPECT_EQ(t[3], 0);

Q
qijun 已提交
162
  functor(context, &tensor, 1);
163 164 165 166 167 168

  EXPECT_EQ(t[0], 1);
  EXPECT_EQ(t[1], 1);
  EXPECT_EQ(t[2], 1);
  EXPECT_EQ(t[3], 1);
}
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

template <typename T>
void GemvTest(int m, int n, bool trans) {
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor vec_b;
  paddle::framework::Tensor vec_c;
  auto* cpu_place = new paddle::platform::CPUPlace();
  int b_num = trans ? m : n;
  int c_num = trans ? n : m;

  T* data_a = mat_a.mutable_data<T>({m, n}, *cpu_place);
  T* data_b = vec_b.mutable_data<T>({b_num}, *cpu_place);
  T* data_c = vec_c.mutable_data<T>({c_num}, *cpu_place);
  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

  paddle::platform::CPUDeviceContext context(*cpu_place);
Y
Yu Yang 已提交
190 191
  GetBlas<T>(context).GEMV(trans, static_cast<int>(m), static_cast<int>(n), 1.,
                           data_a, data_b, 0., data_c);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(4, 5, false);
  GemvTest<float>(12, 7, true);
  GemvTest<double>(7, 9, true);
}
218 219 220 221 222 223 224 225 226 227 228 229

TEST(math_funciton, set_constant) {
  paddle::framework::Tensor t;
  t.Resize({10, 10});
  t.mutable_data<int>(paddle::platform::CPUPlace());
  auto* ctx = new paddle::platform::CPUDeviceContext();
  paddle::operators::math::set_constant(*ctx, &t, 10);
  for (int64_t i = 0; i < t.numel(); ++i) {
    PADDLE_ENFORCE_EQ(10, t.data<int>()[i]);
  }
  delete ctx;
}