pybind.cc 10.1 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
Y
Yu Yang 已提交
20
#include "paddle/framework/op_registry.h"
21
#include "paddle/framework/tensor_py.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
24
#include "paddle/platform/enforce.h"
Q
qijun 已提交
25
#include "paddle/platform/place.h"
26
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
27 28 29 30
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

31 32
namespace py = pybind11;

Y
Yu Yang 已提交
33
USE_OP(add_two);
F
fengjiayi 已提交
34 35
USE_CPU_ONLY_OP(onehot_cross_entropy);
USE_OP(sgd);
Q
qijun 已提交
36
USE_OP(mul);
L
liaogang 已提交
37
USE_OP(mean);
Q
qijun 已提交
38 39 40
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
F
fengjiayi 已提交
41
USE_OP(fill_zeros_like);
F
Fix bug  
fengjiayi 已提交
42
USE_OP_ITSELF(recurrent_op);
43
USE_OP(gaussian_random);
Y
Yu Yang 已提交
44
USE_OP(uniform_random);
45

46 47
namespace paddle {
namespace framework {
D
dongzhihong 已提交
48 49 50

using Tensor = framework::Tensor;

Y
Yu Yang 已提交
51
template <typename ClassType>
52
void ExposeOperator(ClassType &m) {
Y
Yu Yang 已提交
53 54
  m.def("infer_shape", &ClassType::type::InferShape)
      .def("run", &ClassType::type::Run)
Q
Qiao Longfei 已提交
55
      .def("type",
56
           [](const typename ClassType::type &op) -> std::string {
Q
qiaolongfei 已提交
57
             return op.Type();
Q
Qiao Longfei 已提交
58
           })
Y
Yu Yang 已提交
59
      .def("outputs",
Y
Yu Yang 已提交
60
           [](const typename ClassType::type &op)
Y
Yu Yang 已提交
61
               -> std::map<std::string, std::vector<std::string>> {
Q
qiaolongfei 已提交
62
                 return op.Outputs();
63
               })
Y
Yu Yang 已提交
64
      .def("inputs",
Q
qiaolongfei 已提交
65
           [](const typename ClassType::type &op) { return op.Inputs(); })
Y
Yu Yang 已提交
66
      .def("__str__", &ClassType::type::DebugString)
Y
Yu Yang 已提交
67 68 69 70 71
      .def("no_intermediate_outputs",
           [](const typename ClassType::type &op) {
             return op.OutputVars(false);
           })
      .def("support_gpu", &ClassType::type::SupportGPU);
Y
Yu Yang 已提交
72
}
Y
Yu Yang 已提交
73

74 75 76 77 78
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
79 80 81 82 83 84 85 86
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

87
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
88
  py::module m("core", "C++ core of PaddlePaddle");
89

90 91 92
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
93
      .def("get_dims",
94
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
95
      .def("set_dims",
96 97
           [](Tensor &self, const std::vector<int> &dim) {
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
98 99
           })
      .def("alloc_float",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
102
           })
Q
qijun 已提交
103
      .def("alloc_float",
Y
Yu Yang 已提交
104
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
106 107
           })
      .def("alloc_int",
Y
Yu Yang 已提交
108
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
110
           })
Q
qijun 已提交
111
      .def("alloc_int",
Y
Yu Yang 已提交
112
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
113
             self.mutable_data<int>(place);
Q
qijun 已提交
114
           })
Y
Yu Yang 已提交
115 116
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
117
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
118 119
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
120
#endif
121
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
122
      .def("set_float_element",
123
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
124
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
125 126
             self.data<float>()[offset] = f;
           })
127
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
128
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
129 130
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
131

132
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
133 134 135

All parameter, weight, gradient are variables in Paddle.
)DOC")
136
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
137
      .def("set_int",
138 139
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
Y
Yu Yang 已提交
140
      .def("get_tensor",
141
           [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
Y
Yan Chunwei 已提交
142 143
           py::return_value_policy::reference)
      .def("get_net",
D
dongzhihong 已提交
144 145
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
146
           },
Y
Yu Yang 已提交
147
           py::return_value_policy::reference);
148

149
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
150
      .def("new_var",
151
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
152 153
             return self.NewVar(name);
           },
154
           py::return_value_policy::reference)
155
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
156
      .def(py::init<>())
157
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
158
           py::return_value_policy::reference)
159
      .def("drop_kids", &Scope::DropKids);
160

Y
Yu Yang 已提交
161 162
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
163
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
F
WIP  
fengjiayi 已提交
164
    auto &op_info_map = OpRegistry::op_info_map();
Y
Yu Yang 已提交
165
    std::vector<py::bytes> ret_values;
F
WIP  
fengjiayi 已提交
166 167
    for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) {
      const OpProto *proto = it->second.proto_;
F
fengjiayi 已提交
168 169 170
      if (proto == nullptr) {
        continue;
      }
F
WIP  
fengjiayi 已提交
171
      PADDLE_ENFORCE(proto->IsInitialized(), "OpProto must all be initialized");
Y
Yu Yang 已提交
172
      std::string str;
F
WIP  
fengjiayi 已提交
173
      PADDLE_ENFORCE(proto->SerializeToString(&str),
Y
Yu Yang 已提交
174
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
175
      ret_values.push_back(py::bytes(str));
Y
Yu Yang 已提交
176 177 178
    }
    return ret_values;
  });
179 180 181
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
182 183
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
184
  // clang-format off
Y
Yu Yang 已提交
185
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
186 187
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
188
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
189 190 191 192 193
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
194
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
195
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
196
#else
Q
qijun 已提交
197
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
198
#endif
Q
qijun 已提交
199
                  });
Q
qijun 已提交
200
  // clang-format on
Q
qijun 已提交
201

202 203 204
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
205

206 207 208
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
209

210
  py::class_<OperatorBase, std::shared_ptr<OperatorBase>> operator_base(
Y
Yu Yang 已提交
211
      m, "Operator");
Y
Yu Yang 已提交
212

Y
Yu Yang 已提交
213
  operator_base.def_static("create", [](py::bytes protobin) {
214
    OpDesc desc;
Y
Yu Yang 已提交
215 216 217 218 219
    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                   "Cannot parse user input to OpDesc");
    PADDLE_ENFORCE(desc.IsInitialized(),
                   "User OpDesc is not initialized, reason %s",
                   desc.InitializationErrorString());
220
    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
221
  });
Q
Qiao Longfei 已提交
222 223

  operator_base.def("backward",
Y
Yu Yang 已提交
224
                    [](const OperatorBase &forwardOp,
225
                       const std::unordered_set<std::string> &no_grad_vars) {
Y
Yu Yang 已提交
226
                      return Backward(forwardOp, no_grad_vars);
Q
Qiao Longfei 已提交
227 228
                    });

Y
Yu Yang 已提交
229 230
  ExposeOperator(operator_base);

D
dongzhihong 已提交
231
  py::class_<operators::NetOp, std::shared_ptr<operators::NetOp>> net(m, "Net");
Y
Yu Yang 已提交
232 233

  net.def_static("create",
D
dongzhihong 已提交
234 235
                 []() -> std::shared_ptr<operators::NetOp> {
                   auto retv = std::make_shared<operators::NetOp>();
Q
qiaolongfei 已提交
236
                   retv->SetType("plain_net");
Y
Yu Yang 已提交
237 238
                   return retv;
                 })
D
dongzhihong 已提交
239 240 241 242 243 244
      .def("add_op", &operators::NetOp::AddOp)
      .def("add_op",
           [](operators::NetOp &self,
              const std::shared_ptr<operators::NetOp> &net) -> void {
             self.AddOp(std::static_pointer_cast<OperatorBase>(net));
           })
Y
Yan Chunwei 已提交
245 246 247 248 249
      .def("add_op",
           [](operators::NetOp &self,
              const std::shared_ptr<operators::RecurrentOp> &rnn) -> void {
             self.AddOp(std::static_pointer_cast<OperatorBase>(rnn));
           })
D
dongzhihong 已提交
250 251 252 253
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
254

Y
Yu Yang 已提交
255
  ExposeOperator(net);
Y
Yu Yang 已提交
256

Y
Yan Chunwei 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  // recurrent_op
  py::class_<operators::RecurrentOp, std::shared_ptr<operators::RecurrentOp>>
      rnn(m, "RecurrentOp");

  rnn.def_static(
         "create",
         [](py::bytes protobin) -> std::shared_ptr<operators::RecurrentOp> {
           OpDesc desc;
           PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                          "Cannot parse user input to OpDesc");
           PADDLE_ENFORCE(desc.IsInitialized(),
                          "User OpDesc is not initialized, reason %s",
                          desc.InitializationErrorString());
           auto rnn_op = OpRegistry::CreateOp(desc);
           return std::dynamic_pointer_cast<operators::RecurrentOp>(rnn_op);
         })
      .def("set_stepnet",
           [](operators::RecurrentOp &self,
              const std::shared_ptr<operators::NetOp> &net) -> void {
             self.set_stepnet(net);
           });
  ExposeOperator(rnn);

280 281
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
282 283
  m.def("is_compile_gpu", IsCompileGPU);

284
  return m.ptr();
L
Luo Tao 已提交
285
}
286 287
}  // namespace framework
}  // namespace paddle