detection_map_op.h 17.0 KB
Newer Older
W
wanghaox 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
W
wanghaox 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
W
wanghaox 已提交
18 19 20 21

namespace paddle {
namespace operators {

W
wanghaox 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
enum APType { kNone = 0, kIntegral, k11point };

APType GetAPType(std::string str) {
  if (str == "integral") {
    return APType::kIntegral;
  } else if (str == "11point") {
    return APType::k11point;
  } else {
    return APType::kNone;
  }
}

template <typename T>
inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
                                 const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

W
wanghaox 已提交
40 41 42
template <typename T>
inline void GetAccumulation(std::vector<std::pair<T, int>> in_pairs,
                            std::vector<int>* accu_vec) {
W
wanghaox 已提交
43
  std::stable_sort(in_pairs.begin(), in_pairs.end(), SortScorePairDescend<int>);
W
wanghaox 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56
  accu_vec->clear();
  size_t sum = 0;
  for (size_t i = 0; i < in_pairs.size(); ++i) {
    auto count = in_pairs[i].second;
    sum += count;
    accu_vec->push_back(sum);
  }
}

template <typename Place, typename T>
class DetectionMAPOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
57 58 59
    auto* in_detect = ctx.Input<framework::LoDTensor>("Detection");
    auto* in_label = ctx.Input<framework::LoDTensor>("Label");
    auto* out_map = ctx.Output<framework::Tensor>("MAP");
W
wanghaox 已提交
60

W
wanghaox 已提交
61 62 63 64 65 66 67 68
    auto* in_pos_count = ctx.Input<framework::Tensor>("PosCount");
    auto* in_true_pos = ctx.Input<framework::LoDTensor>("TruePos");
    auto* in_false_pos = ctx.Input<framework::LoDTensor>("FalsePos");

    auto* out_pos_count = ctx.Output<framework::Tensor>("OutPosCount");
    auto* out_true_pos = ctx.Output<framework::LoDTensor>("OutTruePos");
    auto* out_false_pos = ctx.Output<framework::LoDTensor>("OutFalsePos");

W
wanghaox 已提交
69 70
    float overlap_threshold = ctx.Attr<float>("overlap_threshold");
    float evaluate_difficult = ctx.Attr<bool>("evaluate_difficult");
W
wanghaox 已提交
71
    auto ap_type = GetAPType(ctx.Attr<std::string>("ap_type"));
W
wanghaox 已提交
72

W
wanghaox 已提交
73 74
    auto label_lod = in_label->lod();
    auto detect_lod = in_detect->lod();
W
wanghaox 已提交
75 76
    PADDLE_ENFORCE_EQ(label_lod.size(), 1UL,
                      "Only support one level sequence now.");
W
wanghaox 已提交
77 78 79 80 81 82 83 84
    PADDLE_ENFORCE_EQ(label_lod[0].size(), detect_lod[0].size(),
                      "The batch_size of input(Label) and input(Detection) "
                      "must be the same.");

    std::vector<std::map<int, std::vector<Box>>> gt_boxes;
    std::vector<std::map<int, std::vector<std::pair<T, Box>>>> detect_boxes;

    GetBoxes(*in_label, *in_detect, gt_boxes, detect_boxes);
W
wanghaox 已提交
85 86 87 88 89

    std::map<int, int> label_pos_count;
    std::map<int, std::vector<std::pair<T, int>>> true_pos;
    std::map<int, std::vector<std::pair<T, int>>> false_pos;

W
wanghaox 已提交
90 91 92 93 94
    if (in_pos_count != nullptr) {
      GetInputPos(*in_pos_count, *in_true_pos, *in_false_pos, label_pos_count,
                  true_pos, false_pos);
    }

W
wanghaox 已提交
95 96 97
    CalcTrueAndFalsePositive(gt_boxes, detect_boxes, evaluate_difficult,
                             overlap_threshold, label_pos_count, true_pos,
                             false_pos);
W
wanghaox 已提交
98 99 100

    T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos);

W
wanghaox 已提交
101 102 103
    GetOutputPos(ctx, label_pos_count, true_pos, false_pos, *out_pos_count,
                 *out_true_pos, *out_false_pos);

W
wanghaox 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    T* map_data = out_map->mutable_data<T>(ctx.GetPlace());
    map_data[0] = map;
  }

 protected:
  struct Box {
    Box(T xmin, T ymin, T xmax, T ymax)
        : xmin(xmin), ymin(ymin), xmax(xmax), ymax(ymax), is_difficult(false) {}

    T xmin, ymin, xmax, ymax;
    bool is_difficult;
  };

  inline T JaccardOverlap(const Box& box1, const Box& box2) const {
    if (box2.xmin > box1.xmax || box2.xmax < box1.xmin ||
        box2.ymin > box1.ymax || box2.ymax < box1.ymin) {
      return 0.0;
W
wanghaox 已提交
121
    } else {
W
wanghaox 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134
      T inter_xmin = std::max(box1.xmin, box2.xmin);
      T inter_ymin = std::max(box1.ymin, box2.ymin);
      T inter_xmax = std::min(box1.xmax, box2.xmax);
      T inter_ymax = std::min(box1.ymax, box2.ymax);

      T inter_width = inter_xmax - inter_xmin;
      T inter_height = inter_ymax - inter_ymin;
      T inter_area = inter_width * inter_height;

      T bbox_area1 = (box1.xmax - box1.xmin) * (box1.ymax - box1.ymin);
      T bbox_area2 = (box2.xmax - box2.xmin) * (box2.ymax - box2.ymin);

      return inter_area / (bbox_area1 + bbox_area2 - inter_area);
W
wanghaox 已提交
135 136 137
    }
  }

W
wanghaox 已提交
138 139 140 141 142 143 144
  void GetBoxes(const framework::LoDTensor& input_label,
                const framework::LoDTensor& input_detect,
                std::vector<std::map<int, std::vector<Box>>>& gt_boxes,
                std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
                    detect_boxes) const {
    auto labels = framework::EigenTensor<T, 2>::From(input_label);
    auto detect = framework::EigenTensor<T, 2>::From(input_detect);
W
wanghaox 已提交
145 146

    auto label_lod = input_label.lod();
W
wanghaox 已提交
147 148 149
    auto detect_lod = input_detect.lod();

    int batch_size = label_lod[0].size() - 1;
W
wanghaox 已提交
150 151
    auto label_index = label_lod[0];

W
wanghaox 已提交
152 153
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<Box>> boxes;
W
wanghaox 已提交
154
      for (int i = label_index[n]; i < label_index[n + 1]; ++i) {
W
wanghaox 已提交
155 156 157 158 159 160 161 162
        Box box(labels(i, 2), labels(i, 3), labels(i, 4), labels(i, 5));
        int label = labels(i, 0);
        auto is_difficult = labels(i, 1);
        if (std::abs(is_difficult - 0.0) < 1e-6)
          box.is_difficult = false;
        else
          box.is_difficult = true;
        boxes[label].push_back(box);
W
wanghaox 已提交
163
      }
W
wanghaox 已提交
164
      gt_boxes.push_back(boxes);
W
wanghaox 已提交
165 166
    }

W
wanghaox 已提交
167 168 169 170 171 172 173 174
    auto detect_index = detect_lod[0];
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<std::pair<T, Box>>> boxes;
      for (int i = detect_index[n]; i < detect_index[n + 1]; ++i) {
        Box box(detect(i, 2), detect(i, 3), detect(i, 4), detect(i, 5));
        int label = detect(i, 0);
        auto score = detect(i, 1);
        boxes[label].push_back(std::make_pair(score, box));
W
wanghaox 已提交
175
      }
W
wanghaox 已提交
176
      detect_boxes.push_back(boxes);
W
wanghaox 已提交
177 178 179
    }
  }

W
wanghaox 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  void GetOutputPos(
      const framework::ExecutionContext& ctx,
      const std::map<int, int>& label_pos_count,
      const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
      framework::Tensor& output_pos_count,
      framework::LoDTensor& output_true_pos,
      framework::LoDTensor& output_false_pos) const {
    int max_class_id = 0;
    int true_pos_count = 0;
    int false_pos_count = 0;
    for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
      int label = it->first;
      if (label > max_class_id) max_class_id = label;
      int label_num_pos = it->second;
      if (label_num_pos == 0 || true_pos.find(label) == true_pos.end())
        continue;
      auto label_true_pos = true_pos.find(label)->second;
      auto label_false_pos = false_pos.find(label)->second;
      true_pos_count += label_true_pos.size();
      false_pos_count += label_false_pos.size();
    }

    int* pos_count_data = output_pos_count.mutable_data<int>(
        framework::make_ddim({max_class_id + 1, 1}), ctx.GetPlace());
    T* true_pos_data = output_true_pos.mutable_data<T>(
        framework::make_ddim({true_pos_count, 2}), ctx.GetPlace());
    T* false_pos_data = output_false_pos.mutable_data<T>(
        framework::make_ddim({false_pos_count, 2}), ctx.GetPlace());
    true_pos_count = 0;
    false_pos_count = 0;
    std::vector<size_t> true_pos_starts = {0};
    std::vector<size_t> false_pos_starts = {0};
    for (int i = 0; i <= max_class_id; ++i) {
      auto it_count = label_pos_count.find(i);
      pos_count_data[i] = 0;
      if (it_count != label_pos_count.end()) {
        pos_count_data[i] = it_count->second;
      }
      auto it_true_pos = true_pos.find(i);
      if (it_true_pos != true_pos.end()) {
        const std::vector<std::pair<T, int>>& true_pos_vec =
            it_true_pos->second;
        for (const std::pair<T, int>& tp : true_pos_vec) {
          true_pos_data[true_pos_count * 2] = tp.first;
          true_pos_data[true_pos_count * 2 + 1] = static_cast<T>(tp.second);
          true_pos_count++;
        }
      }
      true_pos_starts.push_back(true_pos_count);

      auto it_false_pos = false_pos.find(i);
      if (it_false_pos != false_pos.end()) {
        const std::vector<std::pair<T, int>>& false_pos_vec =
            it_false_pos->second;
        for (const std::pair<T, int>& fp : false_pos_vec) {
          false_pos_data[false_pos_count * 2] = fp.first;
          false_pos_data[false_pos_count * 2 + 1] = static_cast<T>(fp.second);
          false_pos_count++;
        }
      }
      false_pos_starts.push_back(false_pos_count);
    }

    framework::LoD true_pos_lod;
    true_pos_lod.emplace_back(true_pos_starts);
    framework::LoD false_pos_lod;
    false_pos_lod.emplace_back(false_pos_starts);

    output_true_pos.set_lod(true_pos_lod);
    output_false_pos.set_lod(false_pos_lod);
    return;
  }

  void GetInputPos(
      const framework::Tensor& input_pos_count,
      const framework::LoDTensor& input_true_pos,
      const framework::LoDTensor& input_false_pos,
      std::map<int, int>& label_pos_count,
      std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
    constexpr T kEPS = static_cast<T>(1e-6);
    int class_number = input_pos_count.dims()[0];
    const int* pos_count_data = input_pos_count.data<int>();
    for (int i = 0; i < class_number; ++i) {
      label_pos_count[i] = pos_count_data[i];
    }

    const T* true_pos_data = input_true_pos.data<T>();
    auto true_pos_data_lod = input_true_pos.lod();
    for (int i = 0; i < true_pos_data_lod.size(); ++i) {
      for (int j = true_pos_data_lod[0][i]; j < true_pos_data_lod[0][i + 1];
           ++j) {
        T score = true_pos_data[j * 2];
        int flag = 1;
        if (true_pos_data[j * 2 + 1] < kEPS) flag = 0;
        true_pos[i].push_back(std::make_pair(score, flag));
      }
    }
    const T* false_pos_data = input_false_pos.data<T>();
    auto false_pos_data_lod = input_false_pos.lod();
    for (int i = 0; i < false_pos_data_lod.size(); ++i) {
      for (int j = false_pos_data_lod[0][i]; j < false_pos_data_lod[0][i + 1];
           ++j) {
        T score = false_pos_data[j * 2];
        int flag = 1;
        if (false_pos_data[j * 2 + 1] < kEPS) flag = 0;
        false_pos[i].push_back(std::make_pair(score, flag));
      }
    }
    return;
  }

W
wanghaox 已提交
293
  void CalcTrueAndFalsePositive(
W
wanghaox 已提交
294 295 296 297
      const std::vector<std::map<int, std::vector<Box>>>& gt_boxes,
      const std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
          detect_boxes,
      bool evaluate_difficult, float overlap_threshold,
W
wanghaox 已提交
298 299 300
      std::map<int, int>& label_pos_count,
      std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
W
wanghaox 已提交
301 302 303 304
    int batch_size = gt_boxes.size();
    for (int n = 0; n < batch_size; ++n) {
      auto image_gt_boxes = gt_boxes[n];
      for (auto it = image_gt_boxes.begin(); it != image_gt_boxes.end(); ++it) {
W
wanghaox 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        size_t count = 0;
        auto labeled_bboxes = it->second;
        if (evaluate_difficult) {
          count = labeled_bboxes.size();
        } else {
          for (size_t i = 0; i < labeled_bboxes.size(); ++i)
            if (!(labeled_bboxes[i].is_difficult)) ++count;
        }
        if (count == 0) {
          continue;
        }
        int label = it->first;
        if (label_pos_count.find(label) == label_pos_count.end()) {
          label_pos_count[label] = count;
        } else {
          label_pos_count[label] += count;
        }
      }
    }

W
wanghaox 已提交
325 326 327
    for (size_t n = 0; n < detect_boxes.size(); ++n) {
      auto image_gt_boxes = gt_boxes[n];
      auto detections = detect_boxes[n];
W
wanghaox 已提交
328

W
wanghaox 已提交
329
      if (image_gt_boxes.size() == 0) {
W
wanghaox 已提交
330
        for (auto it = detections.begin(); it != detections.end(); ++it) {
W
wanghaox 已提交
331
          auto pred_boxes = it->second;
W
wanghaox 已提交
332
          int label = it->first;
W
wanghaox 已提交
333 334
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
W
wanghaox 已提交
335 336 337 338 339 340 341 342 343
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
        }
        continue;
      }

      for (auto it = detections.begin(); it != detections.end(); ++it) {
        int label = it->first;
W
wanghaox 已提交
344 345 346 347
        auto pred_boxes = it->second;
        if (image_gt_boxes.find(label) == image_gt_boxes.end()) {
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
W
wanghaox 已提交
348 349 350 351 352 353
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
          continue;
        }

W
wanghaox 已提交
354
        auto matched_bboxes = image_gt_boxes.find(label)->second;
W
wanghaox 已提交
355 356
        std::vector<bool> visited(matched_bboxes.size(), false);
        // Sort detections in descend order based on scores
W
wanghaox 已提交
357 358 359 360
        std::sort(pred_boxes.begin(), pred_boxes.end(),
                  SortScorePairDescend<Box>);
        for (size_t i = 0; i < pred_boxes.size(); ++i) {
          T max_overlap = -1.0;
W
wanghaox 已提交
361
          size_t max_idx = 0;
W
wanghaox 已提交
362
          auto score = pred_boxes[i].first;
W
wanghaox 已提交
363
          for (size_t j = 0; j < matched_bboxes.size(); ++j) {
W
wanghaox 已提交
364
            T overlap = JaccardOverlap(pred_boxes[i].second, matched_bboxes[j]);
W
wanghaox 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            if (overlap > max_overlap) {
              max_overlap = overlap;
              max_idx = j;
            }
          }
          if (max_overlap > overlap_threshold) {
            bool match_evaluate_difficult =
                evaluate_difficult ||
                (!evaluate_difficult && !matched_bboxes[max_idx].is_difficult);
            if (match_evaluate_difficult) {
              if (!visited[max_idx]) {
                true_pos[label].push_back(std::make_pair(score, 1));
                false_pos[label].push_back(std::make_pair(score, 0));
                visited[max_idx] = true;
              } else {
                true_pos[label].push_back(std::make_pair(score, 0));
                false_pos[label].push_back(std::make_pair(score, 1));
              }
            }
          } else {
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
        }
      }
    }
  }

  T CalcMAP(
W
wanghaox 已提交
394
      APType ap_type, const std::map<int, int>& label_pos_count,
W
wanghaox 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
      const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      const std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
    T mAP = 0.0;
    int count = 0;
    for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
      int label = it->first;
      int label_num_pos = it->second;
      if (label_num_pos == 0 || true_pos.find(label) == true_pos.end())
        continue;
      auto label_true_pos = true_pos.find(label)->second;
      auto label_false_pos = false_pos.find(label)->second;
      // Compute average precision.
      std::vector<int> tp_sum;
      GetAccumulation<T>(label_true_pos, &tp_sum);
      std::vector<int> fp_sum;
      GetAccumulation<T>(label_false_pos, &fp_sum);
W
wanghaox 已提交
411
      std::vector<T> precision, recall;
W
wanghaox 已提交
412 413 414
      size_t num = tp_sum.size();
      // Compute Precision.
      for (size_t i = 0; i < num; ++i) {
W
wanghaox 已提交
415 416 417
        precision.push_back(static_cast<T>(tp_sum[i]) /
                            static_cast<T>(tp_sum[i] + fp_sum[i]));
        recall.push_back(static_cast<T>(tp_sum[i]) / label_num_pos);
W
wanghaox 已提交
418 419
      }
      // VOC2007 style
W
wanghaox 已提交
420 421
      if (ap_type == APType::k11point) {
        std::vector<T> max_precisions(11, 0.0);
W
wanghaox 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435
        int start_idx = num - 1;
        for (int j = 10; j >= 0; --j)
          for (int i = start_idx; i >= 0; --i) {
            if (recall[i] < j / 10.) {
              start_idx = i;
              if (j > 0) max_precisions[j - 1] = max_precisions[j];
              break;
            } else {
              if (max_precisions[j] < precision[i])
                max_precisions[j] = precision[i];
            }
          }
        for (int j = 10; j >= 0; --j) mAP += max_precisions[j] / 11;
        ++count;
W
wanghaox 已提交
436
      } else if (ap_type == APType::kIntegral) {
W
wanghaox 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        // Nature integral
        float average_precisions = 0.;
        float prev_recall = 0.;
        for (size_t i = 0; i < num; ++i) {
          if (fabs(recall[i] - prev_recall) > 1e-6)
            average_precisions += precision[i] * fabs(recall[i] - prev_recall);
          prev_recall = recall[i];
        }
        mAP += average_precisions;
        ++count;
      } else {
        LOG(FATAL) << "Unkown ap version: " << ap_type;
      }
    }
    if (count != 0) mAP /= count;
    return mAP * 100;
  }
};  // namespace operators

}  // namespace operators
}  // namespace paddle