test_profiler_statistic.py 9.7 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
import paddle.profiler as profiler


class HostPythonNode:
    def __init__(self, name, type, start_ns, end_ns, process_id, thread_id):
        self.name = name
        self.type = type
        self.start_ns = start_ns
        self.end_ns = end_ns
        self.process_id = process_id
        self.thread_id = thread_id
        self.children_node = []
        self.runtime_node = []
        self.device_node = []


class DevicePythonNode:
    def __init__(self, name, type, start_ns, end_ns, device_id, context_id,
                 stream_id):
        self.name = name
        self.type = type
        self.start_ns = start_ns
        self.end_ns = end_ns
        self.device_id = device_id
        self.context_id = context_id
        self.stream_id = stream_id


class TestProfilerStatistic(unittest.TestCase):
    def test_statistic_case1(self):
        root_node = HostPythonNode('Root Node',
                                   profiler.TracerEventType.UserDefined, 0,
                                   float('inf'), 1000, 1001)
        profilerstep_node = HostPythonNode('ProfileStep#1',
                                           profiler.TracerEventType.ProfileStep,
                                           0, 400, 1000, 1001)
        dataloader_node = HostPythonNode(
            'Dataloader', profiler.TracerEventType.Forward, 5, 15, 1000, 1001)
        mobilenet_node = HostPythonNode(
            'MobileNet', profiler.TracerEventType.Forward, 20, 50, 1000, 1001)
        yolonet_node = HostPythonNode(
C
chenjian 已提交
59 60 61 62 63 64 65 66 67
            'Yolov3Net', profiler.TracerEventType.Forward, 50, 110, 1000, 1001)

        userdefined_node = HostPythonNode('Communication Time',
                                          profiler.TracerEventType.UserDefined,
                                          100, 110, 1000, 1001)

        communication_node = HostPythonNode(
            'Communication', profiler.TracerEventType.Communication, 105, 110,
            1000, 1001)
C
chenjian 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        backward_node = HostPythonNode('Gradient Backward',
                                       profiler.TracerEventType.Backward, 120,
                                       200, 1000, 1001)
        optimization_node = HostPythonNode(
            'Optimization', profiler.TracerEventType.Optimization, 220, 300,
            1000, 1001)
        conv2d_node = HostPythonNode(
            'conv2d', profiler.TracerEventType.Operator, 25, 40, 1000, 1001)
        sync_batch_norm_node = HostPythonNode('sync_batch_norm',
                                              profiler.TracerEventType.Operator,
                                              60, 100, 1000, 1001)
        conv2d_infer_shape = HostPythonNode(
            'conv2d::infer_shape', profiler.TracerEventType.OperatorInner, 25,
            30, 1000, 1001)
        conv2d_compute = HostPythonNode('conv2d::compute',
                                        profiler.TracerEventType.OperatorInner,
                                        30, 40, 1000, 1001)
        conv2d_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 30, 35,
            1000, 1001)
        conv2d_MemCpy = HostPythonNode('AsyncMemcpy',
                                       profiler.TracerEventType.UserDefined, 35,
                                       40, 1000, 1001)
        conv2d_cudaMemCpy = HostPythonNode('cudaMemcpy',
                                           profiler.TracerEventType.CudaRuntime,
                                           35, 40, 1000, 1001)
        conv2d_kernel = DevicePythonNode(
            'conv2d_kernel', profiler.TracerEventType.Kernel, 35, 50, 0, 0, 0)
        conv2d_memcpy = DevicePythonNode(
            'conv2d_memcpy', profiler.TracerEventType.Memcpy, 50, 60, 0, 0, 0)
        sync_batch_norm_infer_shape = HostPythonNode(
            'sync_batch_norm::infer_shape',
            profiler.TracerEventType.OperatorInner, 60, 70, 1000, 1001)
        sync_batch_norm_compute = HostPythonNode(
            'sync_batch_norm::compute', profiler.TracerEventType.OperatorInner,
            80, 100, 1000, 1001)
        sync_batch_norm_launchkernel = HostPythonNode(
            'cudalaunchkernel', profiler.TracerEventType.CudaRuntime, 80, 90,
            1000, 1001)
        sync_batch_norm_MemCpy = HostPythonNode(
            'AsyncMemcpy', profiler.TracerEventType.UserDefined, 90, 100, 1000,
            1001)
        sync_batch_norm_cudaMemCpy = HostPythonNode(
            'cudaMemcpy', profiler.TracerEventType.CudaRuntime, 90, 100, 1000,
            1001)
        sync_batch_norm_kernel = DevicePythonNode(
            'sync_batch_norm_kernel', profiler.TracerEventType.Kernel, 95, 155,
            0, 0, 0)
        sync_batch_norm_memcpy = DevicePythonNode(
            'sync_batch_norm_memcpy', profiler.TracerEventType.Memcpy, 150, 200,
            0, 0, 1)
        root_node.children_node.append(profilerstep_node)
        profilerstep_node.children_node.extend([
            dataloader_node, mobilenet_node, yolonet_node, backward_node,
            optimization_node
        ])
        mobilenet_node.children_node.append(conv2d_node)
C
chenjian 已提交
125 126 127
        yolonet_node.children_node.extend(
            [sync_batch_norm_node, userdefined_node])
        userdefined_node.children_node.append(communication_node)
C
chenjian 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        conv2d_node.children_node.extend(
            [conv2d_infer_shape, conv2d_compute, conv2d_MemCpy])
        conv2d_compute.runtime_node.append(conv2d_launchkernel)
        conv2d_MemCpy.runtime_node.append(conv2d_cudaMemCpy)
        conv2d_launchkernel.device_node.append(conv2d_kernel)
        conv2d_cudaMemCpy.device_node.append(conv2d_memcpy)
        sync_batch_norm_node.children_node.extend([
            sync_batch_norm_infer_shape, sync_batch_norm_compute,
            sync_batch_norm_MemCpy
        ])
        sync_batch_norm_compute.runtime_node.append(
            sync_batch_norm_launchkernel)
        sync_batch_norm_MemCpy.runtime_node.append(sync_batch_norm_cudaMemCpy)
        sync_batch_norm_launchkernel.device_node.append(sync_batch_norm_kernel)
        sync_batch_norm_cudaMemCpy.device_node.append(sync_batch_norm_memcpy)
        thread_tree = {'thread1001': root_node}
        extra_info = {
            'Process Cpu Utilization': '1.02',
            'System Cpu Utilization': '0.68'
        }
        statistic_data = profiler.profiler_statistic.StatisticData(thread_tree,
                                                                   extra_info)
        time_range_summary = statistic_data.time_range_summary
        event_summary = statistic_data.event_summary

        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.ProfileStep), 400)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
C
chenjian 已提交
158
                profiler.TracerEventType.Forward), 100)
C
chenjian 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Backward), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Optimization), 80)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Operator), 55)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.OperatorInner), 45)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.CudaRuntime), 30)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Kernel), 75)
        self.assertEqual(
            time_range_summary.get_gpu_range_sum(
                0, profiler.TracerEventType.Memcpy), 60)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
C
chenjian 已提交
182 183 184 185
                profiler.TracerEventType.UserDefined), 25)
        self.assertEqual(
            time_range_summary.get_cpu_range_sum(
                profiler.TracerEventType.Communication), 5)
C
chenjian 已提交
186
        self.assertEqual(len(event_summary.items), 2)
C
chenjian 已提交
187
        self.assertEqual(len(event_summary.userdefined_items), 1)
C
chenjian 已提交
188 189 190 191 192
        self.assertEqual(len(event_summary.model_perspective_items), 3)
        self.assertEqual(len(event_summary.memory_manipulation_items), 1)
        self.assertEqual(event_summary.items['conv2d'].cpu_time, 15)
        self.assertEqual(event_summary.items['conv2d'].gpu_time, 25)
        self.assertEqual(
C
chenjian 已提交
193
            event_summary.model_perspective_items['Forward'].cpu_time, 100)
C
chenjian 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        self.assertEqual(
            event_summary.model_perspective_items['Forward'].gpu_time, 135)
        self.assertEqual(
            event_summary.model_perspective_items['Backward'].gpu_time, 0)
        self.assertEqual(
            event_summary.memory_manipulation_items['AsyncMemcpy'].cpu_time, 15)
        self.assertEqual(
            event_summary.memory_manipulation_items['AsyncMemcpy'].gpu_time, 60)
        print(
            profiler.profiler_statistic._build_table(
                statistic_data,
                sorted_by=profiler.SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
                time_unit='ms'))


if __name__ == '__main__':
    unittest.main()