提交 25f29dcf 编写于 作者: L ling

[MS][LITE][Develop] conv1x1 int8 weight transpose bug

上级 a8c5dfae
......@@ -371,26 +371,265 @@ void ConvInt8Opt(int8_t *input_data, int8_t *packed_input, int8_t *packed_weight
}
}
void Conv1x1Int8(const int8_t *packed_input, const int8_t *packed_weight, int8_t *dst, const int32_t *input_sum,
const int32_t *bias, int row, int col, int deep16, ConvParameter *conv_param,
MATMUL_OPT_R_FUNC matmul_func) {
if (matmul_func != NULL) {
matmul_func(packed_input, packed_weight, dst, row, col, deep16, conv_param->output_channel_, input_sum, bias,
conv_param->conv_quant_arg_.left_shift_, conv_param->conv_quant_arg_.right_shift_,
conv_param->conv_quant_arg_.quant_multiplier_, conv_param->conv_quant_arg_.output_quant_args_[0].zp_,
conv_param->conv_quant_arg_.out_act_min_[0], conv_param->conv_quant_arg_.out_act_max_[0],
(conv_param->conv_quant_arg_.filter_arg_num_ > 1));
void Conv1x1PreOpt(const int8_t *src_input, int8_t *packed_input, int32_t *input_sum, size_t input_channel,
size_t output_channel, size_t plane_size, ConvParameter *conv_param) {
int ic4 = UP_ROUND(input_channel, C4NUM);
size_t hw_8div = plane_size / C8NUM * C8NUM;
size_t hw_8res = plane_size - hw_8div;
size_t ic_4div = input_channel / C4NUM * C4NUM;
int32_t filter_zp = conv_param->conv_quant_arg_.filter_quant_args_[0].zp_;
if (conv_param->conv_quant_arg_.filter_arg_num_ == 1) {
const int8_t *src_r = src_input;
int8_t *pack_r = packed_input;
/* per layer */
for (int hwi = 0; hwi < hw_8div; hwi += C8NUM) {
const int8_t *src_ic = src_r;
int8_t *pack_ic = pack_r;
int32_t *input_sum_r = input_sum + hwi;
#ifdef ENABLE_ARM64
size_t src_stride = input_channel;
size_t ic_4res = input_channel - ic_4div;
asm volatile(
"dup v10.4s, wzr \n"
"dup v11.4s, wzr \n"
"mov x20, %[input_sum_r] \n"
"dup v20.4s, %w[filter_zp] \n"
"mov x10, %[src_ic] \n"
"mov x11, %[pack_ic] \n"
"mov x0, #0 \n"
"1: \n"
"cmp x0, %[ic_4div] \n"
"add x0, x0, #4\n"
"mov x12, x10 \n"
"add x10, x10, #4\n"
"blt 2f \n"
"cmp %[ic_4res], #0\n"
"beq 6f \n"
"cmp %[ic_4res], #1\n"
"beq 3f \n"
"cmp %[ic_4res], #2\n"
"beq 4f \n"
"cmp %[ic_4res], #3\n"
"beq 5f \n"
"2: \n"
"ld1 {v0.s}[0], [x12], %[src_stride]\n"
"ld1 {v0.s}[1], [x12], %[src_stride]\n"
"ld1 {v0.s}[2], [x12], %[src_stride]\n"
"ld1 {v0.s}[3], [x12], %[src_stride]\n"
"ld1 {v1.s}[0], [x12], %[src_stride]\n"
"ld1 {v1.s}[1], [x12], %[src_stride]\n"
"ld1 {v1.s}[2], [x12], %[src_stride]\n"
"ld1 {v1.s}[3], [x12], %[src_stride]\n"
"st1 {v0.16b}, [x11], #16\n"
"st1 {v1.16b}, [x11], #16\n"
"saddlp v4.8h, v0.16b \n"
"saddlp v5.8h, v1.16b \n"
"saddlp v0.4s, v4.8h \n"
"saddlp v1.4s, v5.8h \n"
"add v10.4s, v10.4s, v0.4s \n"
"add v11.4s, v11.4s, v1.4s \n"
"b 1b \n"
"3: \n" /* col res 1 */
"dup v0.4s, wzr \n"
"dup v1.4s, wzr \n"
"ld1 {v0.b}[0], [x12], %[src_stride]\n"
"ld1 {v0.b}[4], [x12], %[src_stride]\n"
"ld1 {v0.b}[8], [x12], %[src_stride]\n"
"ld1 {v0.b}[12], [x12], %[src_stride]\n"
"ld1 {v1.b}[0], [x12], %[src_stride]\n"
"ld1 {v1.b}[4], [x12], %[src_stride]\n"
"ld1 {v1.b}[8], [x12], %[src_stride]\n"
"ld1 {v1.b}[12], [x12], %[src_stride]\n"
"st1 {v0.16b}, [x11], #16\n"
"st1 {v1.16b}, [x11], #16\n"
"saddlp v4.8h, v0.16b \n"
"saddlp v5.8h, v1.16b \n"
"saddlp v0.4s, v4.8h \n"
"saddlp v1.4s, v5.8h \n"
"add v10.4s, v10.4s, v0.4s \n"
"add v11.4s, v11.4s, v1.4s \n"
"b 6f \n"
"4: \n" /* col res 2 */
"dup v0.4s, wzr \n"
"dup v1.4s, wzr \n"
"ld1 {v0.h}[0], [x12], %[src_stride]\n"
"ld1 {v0.h}[2], [x12], %[src_stride]\n"
"ld1 {v0.h}[4], [x12], %[src_stride]\n"
"ld1 {v0.h}[6], [x12], %[src_stride]\n"
"ld1 {v1.h}[0], [x12], %[src_stride]\n"
"ld1 {v1.h}[2], [x12], %[src_stride]\n"
"ld1 {v1.h}[4], [x12], %[src_stride]\n"
"ld1 {v1.h}[6], [x12], %[src_stride]\n"
"st1 {v0.16b}, [x11], #16\n"
"st1 {v1.16b}, [x11], #16\n"
"saddlp v4.8h, v0.16b \n"
"saddlp v5.8h, v1.16b \n"
"saddlp v0.4s, v4.8h \n"
"saddlp v1.4s, v5.8h \n"
"add v10.4s, v10.4s, v0.4s \n"
"add v11.4s, v11.4s, v1.4s \n"
"b 6f \n"
"5: \n" /* col res 3 */
"dup v0.4s, wzr \n"
"dup v1.4s, wzr \n"
"add x13, x12, #2 \n"
"ld1 {v0.h}[0], [x12], %[src_stride]\n"
"ld1 {v0.b}[2], [x13], %[src_stride]\n"
"ld1 {v0.h}[2], [x12], %[src_stride]\n"
"ld1 {v0.b}[6], [x13], %[src_stride]\n"
"ld1 {v0.h}[4], [x12], %[src_stride]\n"
"ld1 {v0.b}[10], [x13], %[src_stride]\n"
"ld1 {v0.h}[6], [x12], %[src_stride]\n"
"ld1 {v0.b}[14], [x13], %[src_stride]\n"
"ld1 {v1.h}[0], [x12], %[src_stride]\n"
"ld1 {v1.b}[2], [x13], %[src_stride]\n"
"ld1 {v1.h}[2], [x12], %[src_stride]\n"
"ld1 {v1.b}[6], [x13], %[src_stride]\n"
"ld1 {v1.h}[4], [x12], %[src_stride]\n"
"ld1 {v1.b}[10], [x13], %[src_stride]\n"
"ld1 {v1.h}[6], [x12], %[src_stride]\n"
"ld1 {v1.b}[14], [x13], %[src_stride]\n"
"st1 {v0.16b}, [x11], #16\n"
"st1 {v1.16b}, [x11], #16\n"
"saddlp v4.8h, v0.16b \n"
"saddlp v5.8h, v1.16b \n"
"saddlp v0.4s, v4.8h \n"
"saddlp v1.4s, v5.8h \n"
"add v10.4s, v10.4s, v0.4s \n"
"add v11.4s, v11.4s, v1.4s \n"
"b 6f \n"
"6: \n"
"mul v10.4s, v10.4s, v20.4s \n"
"mul v11.4s, v11.4s, v20.4s \n"
"st1 {v10.4s}, [x20], #16 \n"
"st1 {v11.4s}, [x20], #16 \n"
:
: [ src_ic ] "r"(src_ic), [ pack_ic ] "r"(pack_ic), [ input_sum_r ] "r"(input_sum_r),
[ src_stride ] "r"(src_stride), [ ic_4div ] "r"(ic_4div), [ ic_4res ] "r"(ic_4res),
[ filter_zp ] "r"(filter_zp)
: "x0", "x1", "x10", "x11", "x12", "x13", "x20", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v10", "v11",
"v20");
#else
int32_t tmp_sum_value[8] = {0};
for (int ici = 0; ici < ic_4div; ici += C4NUM) {
for (int i = 0; i < C8NUM; i++) {
tmp_sum_value[i] += src_ic[0 + i * input_channel];
tmp_sum_value[i] += src_ic[1 + i * input_channel];
tmp_sum_value[i] += src_ic[2 + i * input_channel];
tmp_sum_value[i] += src_ic[3 + i * input_channel];
pack_ic[0 + i * C4NUM] = src_ic[0 + i * input_channel];
pack_ic[1 + i * C4NUM] = src_ic[1 + i * input_channel];
pack_ic[2 + i * C4NUM] = src_ic[2 + i * input_channel];
pack_ic[3 + i * C4NUM] = src_ic[3 + i * input_channel];
}
src_ic += C4NUM;
pack_ic += C4NUM * C8NUM;
}
for (int ici = ic_4div; ici < input_channel; ici += 1) {
for (int i = 0; i < C8NUM; i++) {
tmp_sum_value[i] += src_ic[i * input_channel];
pack_ic[i * C4NUM] = src_ic[i * input_channel];
}
src_ic += 1;
pack_ic += 1;
}
for (int i = 0; i < C8NUM; i++) {
input_sum_r[i] = tmp_sum_value[i] * filter_zp;
}
#endif
src_r += input_channel * C8NUM;
pack_r += ic4 * C8NUM;
}
if (hw_8div != plane_size) {
memset(pack_r, 0, C8NUM * ic4);
for (int hwi = hw_8div; hwi < plane_size; hwi += 1) {
int32_t tmp_sum_value = 0;
const int8_t *src_ic = src_r;
int8_t *pack_ic = pack_r;
for (int ici = 0; ici < ic_4div; ici += C4NUM) {
tmp_sum_value += src_ic[0];
tmp_sum_value += src_ic[1];
tmp_sum_value += src_ic[2];
tmp_sum_value += src_ic[3];
pack_ic[0] = src_ic[0];
pack_ic[1] = src_ic[1];
pack_ic[2] = src_ic[2];
pack_ic[3] = src_ic[3];
src_ic += C4NUM;
pack_ic += C4NUM * C8NUM;
}
for (int ici = ic_4div; ici < input_channel; ici += 1) {
tmp_sum_value += src_ic[0];
pack_ic[0] = src_ic[0];
src_ic += 1;
pack_ic += 1;
}
input_sum[hwi] = tmp_sum_value * filter_zp;
src_r += input_channel;
pack_r += C4NUM;
}
for (int hwi = plane_size; hwi < plane_size + hw_8res; hwi++) {
input_sum[hwi] = 0;
}
}
} else {
MatMulInt8_16x4_r(packed_input, packed_weight, dst, row, col, deep16, conv_param->output_channel_, input_sum, bias,
conv_param->conv_quant_arg_.left_shift_, conv_param->conv_quant_arg_.right_shift_,
conv_param->conv_quant_arg_.quant_multiplier_,
conv_param->conv_quant_arg_.output_quant_args_[0].zp_,
conv_param->conv_quant_arg_.out_act_min_[0], conv_param->conv_quant_arg_.out_act_max_[0],
(conv_param->conv_quant_arg_.filter_arg_num_ > 1));
/* per channel */
RowMajor2Row4x8MajorInt8(src_input, packed_input, plane_size, input_channel);
PackInputSum8x4Int8(packed_input, input_sum, input_channel, output_channel, plane_size, conv_param);
}
return;
}
void Conv1x1Int8Opt(const int8_t *packed_input, const int8_t *packed_weight, int8_t *dst, const int32_t *input_sum,
const int32_t *bias, int row, int col, int deep4, ConvParameter *conv_param,
MATMUL_OPT_R_FUNC matmul_func) {
matmul_func(packed_input, packed_weight, dst, row, col, deep4, conv_param->output_channel_, input_sum, bias,
conv_param->conv_quant_arg_.left_shift_, conv_param->conv_quant_arg_.right_shift_,
conv_param->conv_quant_arg_.quant_multiplier_, conv_param->conv_quant_arg_.output_quant_args_[0].zp_,
conv_param->conv_quant_arg_.out_act_min_[0], conv_param->conv_quant_arg_.out_act_max_[0], false);
return;
}
void Conv1x1Int8(const int8_t *packed_input, const int8_t *packed_weight, int8_t *dst, const int32_t *input_sum,
const int32_t *bias, int row, int col, int deep16, ConvParameter *conv_param) {
#ifdef ENABLE_ARM64
MatmulInt8Neon64(packed_input, packed_weight, dst, UP_ROUND(row, C4NUM), UP_ROUND(col, C4NUM), deep16, input_sum,
bias, conv_param->conv_quant_arg_.out_act_min_[0], conv_param->conv_quant_arg_.out_act_max_[0],
conv_param->conv_quant_arg_.output_quant_args_[0].zp_,
conv_param->conv_quant_arg_.quant_multiplier_[0], conv_param->conv_quant_arg_.left_shift_[0],
conv_param->conv_quant_arg_.right_shift_[0], row, col, conv_param->output_channel_);
#else
MatMulInt8_16x4_r(packed_input, packed_weight, dst, row, col, deep16, conv_param->output_channel_, input_sum, bias,
conv_param->conv_quant_arg_.left_shift_, conv_param->conv_quant_arg_.right_shift_,
conv_param->conv_quant_arg_.quant_multiplier_,
conv_param->conv_quant_arg_.output_quant_args_[0].zp_, conv_param->conv_quant_arg_.out_act_min_[0],
conv_param->conv_quant_arg_.out_act_max_[0], false);
#endif
return;
}
// int8 convolution 3x3
void Conv3x3Int8(int16_t *input_data, int16_t *transed_weight, const int32_t *bias_data, int8_t *output_data,
int16_t *tile_buffer, int16_t *block_unit_buffer, int32_t *tmp_dst_buffer, int8_t *tmp_out,
......
......@@ -54,9 +54,13 @@ void ConvInt8Opt(int8_t *input_data, int8_t *packed_input, int8_t *packed_weight
ConvParameter *conv_param, GEMM_FUNC gemm_func);
// int8 convolution 1x1
void Conv1x1PreOpt(const int8_t *src_input, int8_t *packed_input, int32_t *input_sum, size_t input_channel,
size_t output_channel, size_t plane_size, ConvParameter *conv_param);
void Conv1x1Int8(const int8_t *packed_input, const int8_t *packed_weight, int8_t *dst, const int32_t *input_sum,
const int32_t *bias, int row, int col, int deep16, ConvParameter *conv_param,
MATMUL_OPT_R_FUNC matmul_func);
const int32_t *bias, int row, int col, int deep16, ConvParameter *conv_param);
void Conv1x1Int8Opt(const int8_t *packed_input, const int8_t *packed_weight, int8_t *dst, const int32_t *input_sum,
const int32_t *bias, int row, int col, int deep4, ConvParameter *conv_param,
MATMUL_OPT_R_FUNC matmul_func);
// int8 convolution 3x3
void Conv3x3Int8(int16_t *input_data, int16_t *transed_weight, const int32_t *bias_data, int8_t *output_data,
......
......@@ -172,7 +172,7 @@ void DeConvPackWeightSum(int8_t *weight, int32_t *weight_sum, int32_t input_zp,
void DeConvPackInputSum(const int8_t *src, int32_t *dst, int32_t filter_zp, size_t row4, size_t col16,
bool suppport_opt) {
/* optimize normal -> same layout */
PackInputSum16x4PerLater(src, dst, filter_zp, row4, col16);
PackInputSum16x4PerLayer(src, dst, filter_zp, row4, col16);
return;
}
......
......@@ -36,7 +36,24 @@ void RowMajor2Row4x16MajorInt8(int8_t *src_ptr, int8_t *dst_ptr, int row, int co
for (int c = 0; c < col; c++) {
int cd16 = c / C16NUM;
int cm16 = c % C16NUM;
dst_ptr[cd16 * col16 * C4NUM + rd4 * C4NUM * C16NUM + rm4 * C16NUM + cm16] = src_ptr[r * col16 + c];
int dst_index = rd4 * col16 * C4NUM + cd16 * C4NUM * C16NUM + rm4 * C16NUM + cm16;
int src_index = r * col + c;
dst_ptr[dst_index] = src_ptr[src_index];
}
}
}
void RowMajor2Row8x4MajorInt8(const int8_t *src_ptr, int8_t *dst_ptr, int row, int col) {
int col4 = UP_ROUND(col, C4NUM);
for (int r = 0; r < row; r++) {
int rd8 = r / C8NUM;
int rm8 = r % C8NUM;
for (int c = 0; c < col; c++) {
int cd4 = c / C4NUM;
int cm4 = c % C4NUM;
int dst_index = rd8 * col4 * C8NUM + cd4 * C8NUM * C4NUM + rm8 * C4NUM + cm4;
int src_index = r * col + c;
dst_ptr[dst_index] = src_ptr[src_index];
}
}
}
......@@ -50,6 +67,29 @@ void MatrixPack4x16UnitInt8(int8_t *src, int8_t *dst, int row, int col, int stri
return;
}
void MatrixEmptyInt8(int8_t *dst, int row, int col) {
for (int r = 0; r < row; r++) {
int8_t *dst_r = dst + r * C16NUM;
memset(dst_r, 0, col * sizeof(int8_t));
}
return;
}
void RowMajor2Row4x8MajorInt8(const int8_t *src_ptr, int8_t *dst_ptr, int row, int col) {
/* Row-major to row16x4-major (block row-major) */
int col4 = UP_ROUND(col, C4NUM);
for (int r = 0; r < row; r++) {
int rd8 = r / C8NUM, rm8 = r % C8NUM;
for (int c = 0; c < col; c++) {
int cd4 = c / C4NUM, cm4 = c % C4NUM;
int src_index = r * col + c;
int dst_index = rd8 * col4 * C8NUM + cd4 * C4NUM * C8NUM + rm8 * C4NUM + cm4;
dst_ptr[dst_index] = src_ptr[src_index];
}
}
return;
}
void RowMajor2Row16x4MajorInt8(void *src_ptr, void *dst_ptr, int row, int col) {
/* Row-major to row16x4-major (block row-major) */
int col16 = UP_ROUND(col, C16NUM);
......@@ -90,12 +130,15 @@ void RowMajor2Row16x4MajorInt8(void *src_ptr, void *dst_ptr, int row, int col) {
if (col != col_16div) {
MatrixPack4x16UnitInt8(src_r + col_16div, dst_r + col_16div * C4NUM, C4NUM, col_16res, col);
MatrixEmptyInt8(dst_r + col_16div * C4NUM + col_16res, C4NUM, C16NUM - col_16res);
}
src_r += C4NUM * col;
dst_r += C4NUM * col16;
}
if (row != row_4div) {
memset(dst_r, 0, C4NUM * col16);
for (int ci = 0; ci < col_16div; ci += C16NUM) {
MatrixPack4x16UnitInt8(src_r + ci, dst_r + ci * C4NUM, row_4res, C16NUM, col);
}
......@@ -172,6 +215,38 @@ void MatMulInt8_16x4_r(const int8_t *a, const int8_t *b, int8_t *dst, size_t row
return;
}
void MatMulInt8_8x8_r(const int8_t *a, const int8_t *b, int8_t *dst, size_t row, size_t col, size_t deep_4,
size_t stride, const int32_t *input_sum, const int32_t *bias, int32_t *left_shift,
int32_t *right_shift, int32_t *multiplier, int32_t output_zp, int32_t mini, int32_t maxi,
bool per_channel) {
/* row8x4-major * row4x8-major => (int8)row-major */
for (int r = 0; r < row; r++) {
for (int c = 0; c < col; c++) {
int r8div = r / C8NUM, r8mod = r % C8NUM;
int c8div = c / C8NUM, c8mod = c % C8NUM;
size_t ci = r * stride + c;
int32_t value = 0;
for (int d = 0; d < deep_4; d++) {
int d4div = d / C4NUM, d4mod = d % C4NUM;
size_t ai = r8div * deep_4 * C8NUM + d4div * C8NUM * C4NUM + r8mod * C4NUM + d4mod;
size_t bi = c8div * deep_4 * C8NUM + d4div * C8NUM * C4NUM + c8mod * C4NUM + d4mod;
value = value + a[ai] * b[bi];
}
int32_t cur_input_sum = per_channel ? input_sum[c8div * UP_ROUND(row, C8NUM) + r * C8NUM + c8mod] : input_sum[r];
value -= cur_input_sum;
value += bias[c];
int32_t cur_left_shift = per_channel ? left_shift[c] : left_shift[0];
int32_t cur_right_shift = per_channel ? right_shift[c] : right_shift[0];
int32_t cur_multiplier = per_channel ? multiplier[c] : multiplier[0];
value = MultiplyByQuantizedMultiplier(value, cur_multiplier, cur_left_shift, cur_right_shift) + output_zp;
value = MSMIN(maxi, value);
value = MSMAX(mini, value);
dst[ci] = (int8_t)value;
}
}
return;
}
/* row4x16-major * col16x4-major => row4x4-major */
void MatmulInt8(const int8_t *a, const int8_t *b, int8_t *dst, const int *a_sums, const int *bias, int act_min,
int act_max, int out_zp, int multiplier, int left_shift, int right_shift, int row, int col, int deep16,
......
......@@ -35,6 +35,13 @@ void RowMajor2Row4x16MajorInt8(int8_t *src_ptr, int8_t *dst_ptr, int row, int co
void RowMajor2Col8MajorInt8(int8_t *src_ptr, int8_t *dst_ptr, int row, int col);
void RowMajor2Row16x4MajorInt8(void *src_ptr, void *dst_ptr, int row, int col);
void MatMulInt8_8x8_r(const int8_t *a, const int8_t *b, int8_t *dst, size_t row, size_t col, size_t deep_4,
size_t stride, const int32_t *input_sum, const int32_t *bias, int32_t *left_shift,
int32_t *right_shift, int32_t *multiplier, int32_t output_zp, int32_t mini, int32_t maxi,
bool per_channel);
void RowMajor2Row8x4MajorInt8(const int8_t *src_ptr, int8_t *dst_ptr, int row, int col);
void RowMajor2Row4x8MajorInt8(const int8_t *src_ptr, int8_t *dst_ptr, int row, int col);
void RowMajor2Row4x16Major(int8_t *src, int row, int col, int8_t *dst, int col_16);
void RowMajor2Col16x4Major(int8_t *src, int row, int col, int8_t *dst, int row_16);
void CalcInputSums(int8_t *input, int row, int col, int weight_zp, int *dst, DataOrder order);
......
......@@ -22,7 +22,7 @@
typedef void (*MATMUL_OPT_R4_FUNC)(const int8_t *a, const int8_t *b, int *dst, int row_4, int col_4, int deep_16,
const int *input_sum, const int *bias);
typedef void (*MATMUL_OPT_R_FUNC)(const int8_t *a, const int8_t *b, int8_t *dst, size_t row, size_t col, size_t deep_16,
typedef void (*MATMUL_OPT_R_FUNC)(const int8_t *a, const int8_t *b, int8_t *dst, size_t row, size_t col, size_t deep_4,
size_t stride, const int32_t *input_sum, const int32_t *bias, int32_t *left_shift,
int32_t *right_shift, int32_t *multiplier, int32_t output_zp, int32_t mini,
int32_t maxi, bool per_channel);
......@@ -35,11 +35,15 @@ typedef struct MatMulParameter {
OpParameter op_parameter_;
int row_;
int col_;
int row_4_;
int row_8_;
int row_12_;
int row_16_;
int col_4_;
int col_8_;
int deep_;
int deep_4_;
int deep_16_;
bool has_bias_;
int batch;
bool a_transpose_; /* false : row-major */
......
......@@ -37,7 +37,7 @@ void IndirectGemmInt8_optimize_handler(int8_t *dst, const int8_t *src, const int
size_t ksize, size_t ic4, size_t output_channel, size_t offset,
const int32_t *input_sum, size_t act_min, size_t act_max, size_t out_zp,
int32_t *out_multiplier, int32_t *shift_before, int32_t *shift_after,
size_t asymmetric, size_t per_channel) {
size_t asymmetric, size_t per_channel) {
return IndirectGemmInt8_24x4_dp(dst, src, weight, bias, ksize, ic4, output_channel, offset, input_sum, act_min,
act_max, out_zp, out_multiplier, shift_before, shift_after, asymmetric, per_channel);
}
......@@ -47,7 +47,7 @@ void MatMulR4Int8_optimize_handler(const int8_t *a, const int8_t *b, int *dst, i
return MatMulOptR4Int8Neon64(a, b, dst, row4, col4, deep16, input_sum, bias);
}
void MatMulRInt8_optimize_handler(const int8_t *a, const int8_t *b, int8_t *dst, size_t row, size_t col, size_t deep_16,
void MatMulRInt8_optimize_handler(const int8_t *a, const int8_t *b, int8_t *dst, size_t row, size_t col, size_t deep_4,
size_t stride, const int32_t *input_sum, const int32_t *bias, int32_t *left_shift,
int32_t *right_shift, int32_t *multiplier, int32_t output_zp, int32_t mini,
int32_t maxi, bool per_channel) {
......
......@@ -194,7 +194,7 @@ void Pack1x1WeightFp32(const float *weight_data, float *packed_weight, ConvParam
return;
}
void PackInputSum16x4PerLater(const int8_t *src, int32_t *dst, int32_t filter_zp, size_t row4, size_t col16) {
void PackInputSum16x4PerLayer(const int8_t *src, int32_t *dst, int32_t filter_zp, size_t row4, size_t col16) {
/* optimize normal -> same layout */
#ifdef ENABLE_ARM64
asm volatile(
......@@ -267,12 +267,12 @@ void PackInputSum16x4PerLater(const int8_t *src, int32_t *dst, int32_t filter_zp
return;
}
void PackInputSum16x4Int8(int8_t *input_value, int32_t *input_sum, size_t input_channel, size_t output_channel,
void PackInputSum16x4Int8(const int8_t *input_value, int32_t *input_sum, size_t input_channel, size_t output_channel,
size_t plane_size, ConvParameter *conv_param) {
size_t hw4 = UP_ROUND(plane_size, C4NUM);
size_t ic16 = UP_ROUND(input_channel, C16NUM);
if (conv_param->conv_quant_arg_.filter_arg_num_ == 1) {
PackInputSum16x4PerLater(input_value, input_sum, conv_param->conv_quant_arg_.filter_quant_args_[0].zp_, hw4, ic16);
PackInputSum16x4PerLayer(input_value, input_sum, conv_param->conv_quant_arg_.filter_quant_args_[0].zp_, hw4, ic16);
} else {
for (int ri = 0; ri < plane_size; ri++) {
int ri4div = ri / C4NUM, ri4mod = ri % C4NUM;
......@@ -293,6 +293,40 @@ void PackInputSum16x4Int8(int8_t *input_value, int32_t *input_sum, size_t input_
return;
}
void PackInputSum8x4Int8(const int8_t *input_value, int32_t *input_sum, size_t input_channel, size_t output_channel,
size_t plane_size, ConvParameter *conv_param) {
size_t hw8 = UP_ROUND(plane_size, C8NUM);
size_t ic4 = UP_ROUND(input_channel, C4NUM);
if (conv_param->conv_quant_arg_.filter_arg_num_ == 1) {
for (int r = 0; r < hw8; r++) {
int32_t tmp_value = 0;
for (int c = 0; c < ic4; c++) {
int r8div = r / C8NUM, r8mod = r % C8NUM, c4div = c / C4NUM, c4mod = c % C4NUM;
int src_index = r8div * C8NUM * ic4 + c4div * C8NUM * C4NUM + r8mod * C4NUM + c4mod;
tmp_value += input_value[src_index];
}
input_sum[r] = tmp_value * conv_param->conv_quant_arg_.filter_quant_args_[0].zp_;
}
} else {
for (int ri = 0; ri < plane_size; ri++) {
int ri8div = ri / C8NUM, ri8mod = ri % C8NUM;
for (int ci = 0; ci < output_channel; ci++) {
int32_t tmp_sum_value = 0;
int ci8div = ci / C8NUM, ci8mod = ci % C8NUM;
int32_t filter_zp = conv_param->conv_quant_arg_.filter_quant_args_[ci].zp_;
for (int di = 0; di < input_channel; di++) {
size_t di4div = di / C4NUM, di4mod = di % C4NUM;
int src_index = ri8div * C8NUM * ic4 + di4div * C8NUM * C4NUM + ri8mod * C4NUM + di4mod;
tmp_sum_value += input_value[src_index];
}
int dst_index = ci8div * C8NUM * hw8 + ri * C8NUM + ci8mod;
input_sum[dst_index] = tmp_sum_value * filter_zp;
}
}
}
return;
}
void Im2ColPackUnitFp32(const float *input_data, ConvParameter *conv_param, float *packed_input, int real_cal_num,
int block_index) {
// input format : nhwc
......
......@@ -35,15 +35,18 @@ void Im2ColPackUnitInt8(const int8_t *input_data, int8_t *packed_input, int real
void Im2ColPackUnitInt8Opt(const int8_t *input_data, int8_t *packed_input, int real_cal_num, int block_index,
int32_t *input_sum, ConvParameter *conv_param);
void PackInputSum16x4PerLater(const int8_t *src, int32_t *dst, int32_t filter_zp, size_t row4, size_t col16);
void PackInputSum16x4PerLayer(const int8_t *src, int32_t *dst, int32_t filter_zp, size_t row4, size_t col16);
void Conv1x1InputPack(const void *src_ptr, void *dst_ptr, ConvParameter *conv_param, int data_size);
void Pack1x1WeightFp32(const float *weight_data, float *packed_weight, ConvParameter *conv_param);
void PackInputSum16x4Int8(int8_t *input_value, int32_t *input_sum, size_t input_channel, size_t output_channel,
void PackInputSum16x4Int8(const int8_t *input_value, int32_t *input_sum, size_t input_channel, size_t output_channel,
size_t plane_size, ConvParameter *conv_param);
void PackInputSum8x4Int8(const int8_t *input_value, int32_t *input_sum, size_t input_channel, size_t output_channel,
size_t plane_size, ConvParameter *conv_param);
void MatrixPack(const float *src, float *dst, int row, int ic4, int stride);
void PackInputToC8Int8(const int8_t *input_data, int16_t *packed_input, ConvParameter *conv_param);
......
......@@ -22,6 +22,15 @@ using mindspore::lite::RET_MEMORY_FAILED;
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int Convolution1x1Int8Pre(void *cdata, int task_id) {
auto conv = reinterpret_cast<Convolution1x1Int8CPUKernel *>(cdata);
auto error_code = conv->RunPre(task_id);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv1x1 Int8 RunPre error task_id[" << task_id << "] error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
Convolution1x1Int8CPUKernel::~Convolution1x1Int8CPUKernel() {
if (matmul_param_ != nullptr) {
......@@ -37,20 +46,16 @@ Convolution1x1Int8CPUKernel::~Convolution1x1Int8CPUKernel() {
}
void Convolution1x1Int8CPUKernel::FreeResizeBuf() {
if (packed_input_ != nullptr) {
free(packed_input_);
packed_input_ = nullptr;
}
if (input_sum_ != nullptr) {
free(input_sum_);
input_sum_ = nullptr;
if (pre_trans_input_ && input_ptr_ != nullptr) {
free(input_ptr_);
input_ptr_ = nullptr;
}
return;
}
void Convolution1x1Int8CPUKernel::CheckSupportOptimize() {
support_optimize_ = false;
matmul_func_ = MatMulInt8_16x4_r;
support_optimize_ = true;
matmul_func_ = MatMulInt8_8x8_r;
#ifdef ENABLE_ARM64
void *optimize_op_handler = OptimizeModule::GetInstance()->optimized_op_handler_;
if (optimize_op_handler != nullptr) {
......@@ -63,14 +68,13 @@ void Convolution1x1Int8CPUKernel::CheckSupportOptimize() {
matmul_func_ = nullptr;
} else {
support_optimize_ = true;
matmul_func_ = MatMulInt8_8x8_r;
}
} else {
support_optimize_ = false;
matmul_func_ = nullptr;
}
#endif
matmul_func_ = MatMulInt8_16x4_r;
return;
}
......@@ -80,24 +84,32 @@ int Convolution1x1Int8CPUKernel::InitWeightBias() {
auto output_channel = filter_tensor->Batch();
/* weight */
size_t size = UP_ROUND(input_channel, C16NUM) * UP_ROUND(output_channel, C4NUM) * sizeof(int8_t);
size_t size = support_optimize_ ? UP_ROUND(input_channel, C4NUM) * UP_ROUND(output_channel, C8NUM) * sizeof(int8_t)
: UP_ROUND(input_channel, C16NUM) * UP_ROUND(output_channel, C4NUM) * sizeof(int8_t);
packed_weight_ = reinterpret_cast<int8_t *>(malloc(size));
if (packed_weight_ == nullptr) {
MS_LOG(ERROR) << "Conv1x1 int8 Malloc weight error!";
return RET_ERROR;
}
memset(packed_weight_, 0, size);
RowMajor2Row4x16MajorInt8(reinterpret_cast<int8_t *>(filter_tensor->Data()), packed_weight_, output_channel,
input_channel);
if (support_optimize_) {
RowMajor2Row8x4MajorInt8(reinterpret_cast<int8_t *>(filter_tensor->Data()), packed_weight_, output_channel,
input_channel);
} else {
RowMajor2Row4x16MajorInt8(reinterpret_cast<int8_t *>(filter_tensor->Data()), packed_weight_, output_channel,
input_channel);
}
/* bias = bias - v2 x zp1 + zp1 x zp2 */
int col4 = UP_ROUND(output_channel, C4NUM);
bias_data_ = malloc(col4 * sizeof(int32_t));
int col8 = UP_ROUND(output_channel, C8NUM);
size = support_optimize_ ? col8 * sizeof(int32_t) : col4 * sizeof(int32_t);
bias_data_ = malloc(size);
if (bias_data_ == nullptr) {
MS_LOG(ERROR) << "Conv1x1 int8 Malloc bias_ptr_ error!";
return RET_ERROR;
}
memset(bias_data_, 0, col4 * sizeof(int32_t));
memset(bias_data_, 0, size);
if (in_tensors_.size() == 3) {
memcpy(bias_data_, in_tensors_[kBiasIndex]->Data(), output_channel * sizeof(int32_t));
}
......@@ -119,9 +131,6 @@ int Convolution1x1Int8CPUKernel::InitWeightBias() {
}
int Convolution1x1Int8CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
matmul_param_ = new (std::nothrow) MatMulParameter();
if (matmul_param_ == nullptr) {
MS_LOG(ERROR) << "Init matmul_param_ failed.";
......@@ -142,6 +151,9 @@ int Convolution1x1Int8CPUKernel::Init() {
return ret;
}
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
......@@ -152,30 +164,52 @@ int Convolution1x1Int8CPUKernel::InitParam() {
matmul_param_->row_ = conv_param_->output_h_ * conv_param_->output_w_;
matmul_param_->deep_ = conv_param_->input_channel_;
matmul_param_->col_ = conv_param_->output_channel_;
thread_count_ = MSMIN(op_parameter_->thread_num_, UP_DIV(matmul_param_->col_, C4NUM));
thread_stride_ = UP_DIV(UP_DIV(matmul_param_->col_, C4NUM), thread_count_);
size_t size = UP_ROUND(matmul_param_->row_, C4NUM) * UP_ROUND(matmul_param_->deep_, C16NUM);
packed_input_ = reinterpret_cast<int8_t *>(malloc(size * sizeof(int8_t)));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "conv1x1 int8 Malloc packed_input_ error!";
return RET_ERROR;
matmul_param_->col_4_ = UP_ROUND(matmul_param_->col_, C4NUM);
matmul_param_->col_8_ = UP_ROUND(matmul_param_->col_, C8NUM);
matmul_param_->row_4_ = UP_ROUND(matmul_param_->row_, C4NUM);
matmul_param_->row_8_ = UP_ROUND(matmul_param_->row_, C8NUM);
matmul_param_->deep_4_ = UP_ROUND(matmul_param_->deep_, C4NUM);
matmul_param_->deep_16_ = UP_ROUND(matmul_param_->deep_, C16NUM);
/* init input sum size */
if (support_optimize_) {
if (conv_quant_arg_->per_channel_ & FILTER_PER_CHANNEL) {
input_sum_size = UP_ROUND(conv_param_->output_channel_, C8NUM) * UP_ROUND(matmul_param_->row_, C8NUM);
} else {
input_sum_size = UP_ROUND(matmul_param_->row_, C8NUM);
}
} else {
if (conv_quant_arg_->per_channel_ & FILTER_PER_CHANNEL) {
input_sum_size = UP_ROUND(conv_param_->output_channel_, C4NUM) * UP_ROUND(matmul_param_->row_, C4NUM);
} else {
input_sum_size = UP_ROUND(matmul_param_->row_, C4NUM);
}
}
memset(packed_input_, 0, size * sizeof(int8_t));
if (conv_quant_arg_->per_channel_ & FILTER_PER_CHANNEL) {
size = UP_ROUND(conv_param_->output_channel_, C4NUM) * UP_ROUND(matmul_param_->row_, C4NUM);
if (support_optimize_) {
thread_count_ = MSMIN(op_parameter_->thread_num_, UP_DIV(matmul_param_->col_, C8NUM));
thread_stride_ = UP_DIV(UP_DIV(matmul_param_->col_, C8NUM), thread_count_);
} else {
size = UP_ROUND(matmul_param_->row_, C4NUM);
thread_count_ = MSMIN(op_parameter_->thread_num_, UP_DIV(matmul_param_->col_, C4NUM));
thread_stride_ = UP_DIV(UP_DIV(matmul_param_->col_, C4NUM), thread_count_);
}
input_sum_ = reinterpret_cast<int32_t *>(malloc(size * sizeof(int32_t)));
if (input_sum_ == nullptr) {
MS_LOG(ERROR) << "malloc input_sum_ failed.";
return RET_ERROR;
if (support_optimize_) {
thread_count_hw_ = MSMIN(op_parameter_->thread_num_, UP_DIV(matmul_param_->row_, C8NUM));
thread_stride_hw_ = UP_DIV(UP_DIV(matmul_param_->row_, C8NUM), thread_count_hw_);
} else {
thread_count_hw_ = MSMIN(op_parameter_->thread_num_, UP_DIV(matmul_param_->row_, C4NUM));
thread_stride_hw_ = UP_DIV(UP_DIV(matmul_param_->row_, C4NUM), thread_count_hw_);
}
memset(input_sum_, 0, size * sizeof(int32_t));
if (pre_trans_input_) {
input_ptr_ = reinterpret_cast<int8_t *>(malloc(matmul_param_->row_ * matmul_param_->deep_ * sizeof(int8_t)));
if (input_ptr_ == nullptr) {
MS_LOG(ERROR) << "Conv1x1 int8 Malloc input_ptr_ error!";
return RET_MEMORY_FAILED;
}
memset(input_ptr_, 0, matmul_param_->row_ * matmul_param_->deep_ * sizeof(int8_t));
}
return RET_OK;
}
......@@ -199,21 +233,54 @@ void Convolution1x1Int8CPUKernel::Pre1x1Trans(int8_t *src_input, int8_t *src_out
} else {
input_ptr_ = src_input;
}
RowMajor2Row16x4MajorInt8(input_ptr_, packed_input_, matmul_param_->row_, matmul_param_->deep_);
if (support_optimize_) {
ParallelLaunch(THREAD_POOL_DEFAULT, Convolution1x1Int8Pre, this, thread_count_hw_);
} else {
RowMajor2Row16x4MajorInt8(input_ptr_, packed_input_, matmul_param_->row_, matmul_param_->deep_);
PackInputSum16x4Int8(packed_input_, input_sum_, matmul_param_->deep_, matmul_param_->col_, matmul_param_->row_,
conv_param_);
}
return;
}
int Convolution1x1Int8CPUKernel::RunImpl(int task_id) {
int cur_oc = MSMIN(thread_stride_ * C4NUM, matmul_param_->col_ - task_id * thread_stride_ * C4NUM);
if (cur_oc <= 0) {
return RET_OK;
if (support_optimize_) {
int cur_stride = thread_stride_ * C8NUM;
int res_stride = matmul_param_->col_ - task_id * thread_stride_ * C8NUM;
int cur_oc = MSMIN(cur_stride, res_stride);
if (cur_oc <= 0) {
return RET_OK;
}
Conv1x1Int8Opt(packed_input_, packed_weight_ + task_id * thread_stride_ * C8NUM * matmul_param_->deep_4_,
output_ptr_ + task_id * thread_stride_ * C8NUM, input_sum_,
reinterpret_cast<int32_t *>(bias_data_) + task_id * thread_stride_ * C8NUM, matmul_param_->row_,
cur_oc, matmul_param_->deep_4_, conv_param_, matmul_func_);
} else {
int cur_stride = thread_stride_ * C4NUM;
int res_stride = matmul_param_->col_ - task_id * thread_stride_ * C4NUM;
int cur_oc = MSMIN(cur_stride, res_stride);
if (cur_oc <= 0) {
return RET_OK;
}
Conv1x1Int8(packed_input_, packed_weight_ + task_id * thread_stride_ * C4NUM * matmul_param_->deep_16_,
output_ptr_ + task_id * thread_stride_ * C4NUM, input_sum_,
reinterpret_cast<int32_t *>(bias_data_) + task_id * thread_stride_ * C4NUM, matmul_param_->row_, cur_oc,
matmul_param_->deep_16_, conv_param_);
}
return RET_OK;
}
int32_t *bias = reinterpret_cast<int32_t *>(bias_data_) + thread_stride_ * C4NUM * task_id;
Conv1x1Int8(packed_input_, packed_weight_ + task_id * thread_stride_ * C4NUM * matmul_param_->deep_,
output_ptr_ + task_id * thread_stride_ * C4NUM, input_sum_, bias + task_id * thread_stride_ * C4NUM,
matmul_param_->row_, cur_oc, UP_ROUND(matmul_param_->deep_, C16NUM), conv_param_, matmul_func_);
int Convolution1x1Int8CPUKernel::RunPre(int task_id) {
int cur_hw = MSMIN(thread_stride_hw_ * C8NUM, matmul_param_->row_ - task_id * thread_stride_hw_ * C8NUM);
if (cur_hw <= 0) {
return RET_OK;
}
Conv1x1PreOpt(input_ptr_ + task_id * thread_stride_hw_ * C8NUM * matmul_param_->deep_,
packed_input_ + task_id * thread_stride_hw_ * C8NUM * matmul_param_->deep_4_,
input_sum_ + task_id * thread_stride_hw_ * C8NUM, matmul_param_->deep_, matmul_param_->col_, cur_hw,
conv_param_);
return RET_OK;
}
......@@ -227,6 +294,35 @@ int Convolution1x1Int8Impl(void *cdata, int task_id) {
return RET_OK;
}
int Convolution1x1Int8CPUKernel::InitRunBuf() {
input_sum_ = reinterpret_cast<int32_t *>(malloc(input_sum_size * sizeof(int32_t)));
if (input_sum_ == nullptr) {
MS_LOG(ERROR) << "malloc input_sum_ failed.";
return RET_ERROR;
}
size_t size = support_optimize_ ? UP_ROUND(matmul_param_->row_, C8NUM) * UP_ROUND(matmul_param_->deep_, C4NUM)
: UP_ROUND(matmul_param_->row_, C4NUM) * UP_ROUND(matmul_param_->deep_, C16NUM);
packed_input_ = reinterpret_cast<int8_t *>(ctx_->allocator->Malloc(size * sizeof(int8_t)));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "conv1x1 int8 Malloc packed_input_ error!";
return RET_ERROR;
}
return RET_OK;
}
void Convolution1x1Int8CPUKernel::FreeRunBuf() {
if (packed_input_ != nullptr) {
ctx_->allocator->Free(packed_input_);
packed_input_ = nullptr;
}
if (input_sum_ != nullptr) {
ctx_->allocator->Free(input_sum_);
input_sum_ = nullptr;
}
return;
}
int Convolution1x1Int8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
......@@ -234,13 +330,10 @@ int Convolution1x1Int8CPUKernel::Run() {
return RET_ERROR;
}
if (pre_trans_input_) {
input_ptr_ =
reinterpret_cast<int8_t *>(ctx_->allocator->Malloc(matmul_param_->row_ * matmul_param_->deep_ * sizeof(int8_t)));
if (input_ptr_ == nullptr) {
MS_LOG(ERROR) << "Conv1x1 int8 Malloc input_ptr_ error!";
return RET_MEMORY_FAILED;
}
int error_code = InitRunBuf();
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv1x1 int8 InitRunBuf error_code[" << error_code << "]";
return RET_ERROR;
}
int8_t *src_in = reinterpret_cast<int8_t *>(in_tensors_[0]->Data());
......@@ -249,21 +342,10 @@ int Convolution1x1Int8CPUKernel::Run() {
for (int batch_index = 0; batch_index < conv_param_->input_batch_; batch_index++) {
Pre1x1Trans(src_in + batch_index * conv_param_->input_h_ * conv_param_->input_w_ * conv_param_->input_channel_,
src_out + batch_index * matmul_param_->row_ * matmul_param_->col_);
PackInputSum16x4Int8(packed_input_, input_sum_, matmul_param_->deep_, matmul_param_->col_, matmul_param_->row_,
conv_param_);
int error_code = ParallelLaunch(THREAD_POOL_DEFAULT, Convolution1x1Int8Impl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv1x1 fp16 error error_code[" << error_code << "]";
return RET_ERROR;
}
ParallelLaunch(THREAD_POOL_DEFAULT, Convolution1x1Int8Impl, this, thread_count_);
}
if (pre_trans_input_ && input_ptr_ != nullptr) {
ctx_->allocator->Free(input_ptr_);
input_ptr_ = nullptr;
}
FreeRunBuf();
return RET_OK;
}
......
......@@ -40,8 +40,13 @@ class Convolution1x1Int8CPUKernel : public ConvolutionBaseCPUKernel {
int ReSize() override;
int Run() override;
private:
int InitRunBuf();
void FreeRunBuf();
public:
int RunImpl(int task_id);
int RunPre(int task_id);
private:
void FreeResizeBuf();
......@@ -58,7 +63,10 @@ class Convolution1x1Int8CPUKernel : public ConvolutionBaseCPUKernel {
int8_t *output_ptr_ = nullptr;
size_t thread_count_ = 1;
size_t thread_stride_ = 0;
size_t thread_count_hw_ = 1;
size_t thread_stride_hw_ = 0;
bool pre_trans_input_ = false;
size_t input_sum_size = 0;
MatMulParameter *matmul_param_ = nullptr;
MATMUL_OPT_R_FUNC matmul_func_ = nullptr;
bool support_optimize_ = false;
......
......@@ -398,11 +398,11 @@ kernel::LiteKernel *CpuConvInt8KernelCreator(const std::vector<lite::tensor::Ten
int dilation_h = conv_param->dilation_h_;
int dilation_w = conv_param->dilation_w_;
kernel::LiteKernel *kernel;
auto filter_quant_size = inputs[kWeightIndex]->GetQuantParams().size();
if (kernel_h == 3 && kernel_w == 3 && stride_h == 1 && stride_w == 1 && dilation_h == 1 && dilation_w == 1) {
kernel = new (std::nothrow) kernel::Convolution3x3Int8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
} else if (kernel_h == 1 && kernel_w == 1) {
/* Convolution1x1Int8CPUKernel */
kernel = new (std::nothrow) kernel::ConvolutionInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
} else if (kernel_h == 1 && kernel_w == 1 && filter_quant_size == 1) {
kernel = new (std::nothrow) kernel::Convolution1x1Int8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
} else {
kernel = new (std::nothrow) kernel::ConvolutionInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册